

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

OPTIMIZATION OF SYNCHRONIZATION PARAMETERS FOR HYDROFORMING T-TUBE PROCESS

By

Moataz AbdelGawad Mohammed AbdelGawad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

OPTIMIZATION OF SYNCHRONIZATION PARAMETERS FOR HYDROFORMING T-TUBE PROCESS

By

Moataz AbdelGawad Mohammed AbdelGawad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Tarek AbdelSadek Osman

Professor of Machine Design
Mechanical Design and Prod. Dept.
Faculty of Engineering,
Cairo University

Prof. Dr. Mostafa Shazly

Professor of Solid Mechanics
Mechanical Engineering Dept.
Faculty of Engineering,
British University in Cairo

FACULTY OF ENGINEERING, CAIROUNIVERSITY GIZA, EGYPT 2021

OPTIMIZATION OF SYNCHRONIZATION PARAMETERS FOR HYDROFORMING T-TUBE PROCESS

By

Moataz AbdelGawad Mohammed AbdelGawad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

in

Approved by the Examining Committee			
Prof. Dr. Tarek AbdelSadek Osman,	Thesis Main Advisor		
Prof. Dr. Mostafa Shazly, Professor of Solid Mechanics, Mechanical I Faculty of Engineering, British University i			
Prof. Dr. Hesham Hegazi,	Internal Examiner		
Prof. Dr. Mohamed Ibrahim Mohamed I Professor and Head of the Mechanical Engi	•		

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

National Research Center.

Engineer: Moataz AbdelGawad Mohammed AbdelGawad

Date of Birth: 19 / 7 / 1983

Nationality: Egyptian

E-mail: moatazmech@gmail.com **Phone.:** 01271915198 / 01064575722

Address: 5th Aadam street-Altaawon Station-Giza

Registration Date: 1 / 10 / 2012 **Awarding Date:** / / 2021 **Degree:** Doctor of Philosophy

Department: Mechanical Design and Production Engineering

Supervisors: Prof. Dr. Tarek AbdelSadek Osman

Prof. Dr. Mostafa Hassan Yousef Shazly

Professor of Solid Mechanics, Mechanical Engineering Department

Faculty of Engineering, British University in Cairo

Examiners:

Prof. Dr. Tarek AbdelSadek Osman (Thesis main advisor)

Prof. Dr. Mostafa Hassan Yousef Shazly (advisor)

Professor of Solid Mechanics, Mechanical Engineering Department

Faculty of Engineering, British University in Cairo Prof. Dr. Hesham Ahmed Hegazi (Internal examiner)

Prof. Dr. Mohamed Ibrahim Mohamed Elanwar (External examiner)

Professor and Head of the Mechanical Engineering

Department at the National Research Center

Title of Thesis:

OPTIMIZATION OF SYNCHRONIZATION PARAMETERS FOR HYDROFORMING T-TUBE PROCESS

Key Words: Tube hydroforming; Machine learning; Multiple ridge regression;

Loading path; Wrinkling

Summary:

An adaptive, heuristic, nonlinear mathematical model (AHNM) was proposed to optimize the loading path of a hydroforming process as a result of adaptive minimization of the internal pressure and axial load of the process. FEA was used to analyse the process, also this research examined several Machine Learning algorithms such as; Multiple Ridge Regression and Random Forest to learn the relations between the features. The linearity between the features was assumed to create simple AHNM model, where the Multiple Ridge Regression was found to give the highest accuracy. AHNM model was implemented, solved, and optimized using several steps of tee protrusion height. A new Test Rig was developed to experiment the validity of the obtained loading paths for different thicknesses of tube. This research applied the machine learning in this process for the first time, and confirmed that creation of the (AHNM) modelling was successful application.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Moataz AbdelGawad Mohammed AbdelGawad Date:/ 2021

Signature:

Acknowledgments

In the name of Allah, the most gracious, the most merciful All praise to Allah, the almighty who made me accomplished this research

My deep appreciation goes to my thesis advisor **Prof. Dr. Tarek Abd El-Sadek** for his guidance and useful comments on the thesis and review of it to be performed in satisfactory manner.

I am especially thankful and grateful to my thesis member **Prof. Dr. Mostafa Shazly**, for his constant help, guidance and the countless hours of attention he devoted throughout my study and through achieving this work. His priceless suggestions made this work interesting and learning for me and others.

I would like to express my gratitude to my colleague **Dr. Mohmmad Mahmoud Abdu Hanafy** who provided me with full support while doing this work.

I wish to express my heartfelt gratitude to my parents and my brothers for their encouragement, constant prayers and continuing support. Especially I owe a lot of thanks to my dear wife for her extra patience and motivation and for her helping in preparing the manuscript.

Acknowledgment is to the Mechanical Design and Production department of Faculty of Engineering, CAIRO UNIVERSITY for extending facilities for support this thesis work.

Table of Contents

L	ST OF	TABLES	.V
Ll	ST OF	FIGURES	VI
N	OMEN	CLATURE V	Ш
A]	BSTRA	CT	IX
1	CHA	APTER ONE – INTRODUCTION	1
	1.1	Introduction of Tube Hydroforming Process	1
		Advantages of Tube Hydroforming Process	
		Types of Tube Hydroforming Process	
	1.3.1	Traditional hydroforming	2
	1.3.2	Low-pressure hydroforming	2
	1.3.3	High-pressure hydroforming	4
		Applications of Tube Hydroforming Process	
		Historical Research Background of Tube Hydroforming Process	5
	1.5.1	J C 1	
	1.5.2		
		Motivations	
		Machine Learning	
		Problem statement	
		Objectives	
		Research Methodology	
2	CHA	APTER TWO – LITERATURE SURVEY	11
	2.1	The Founder and the State of the Art	11
	2.2	Mathematical Modelling and Experiments to Study the Process Parameters	11
		Finite Element Modelling to Study and Optimize the Process	
		Forming Limit Diagram to Identify the Failure Initiation	
		The Combination of FEA and other Mathematical Techniques	
		Statistical Analysis for Tube Hydroforming Process	
		Friction in Tube Hydroforming Process	
	2.8	Discussion on the Adaptive Techniques and Failure Indicators	15
3		APTER THREE – ADAPTIVE HEURISTIC NONLINEAR	
M	ATHE	MATICAL (AHNM) MODEL	17
	3.1	Adaptive Heuristic Framework	17
		FEA Model for Hydroforming Process	
		Development of AHNM Model	
	3.3.1	Model's Indicators	24
	3.3.2	Model Development	25
	3.3.3	Model Explanation:	26
	3.3.4	1	
		Machine Learning Algorithms Results	
	3.5	Implementation of AHNM Model by Multiple Ridge Regression	27

4 Tl	CHAPTER FOUR – RESULTS AND VERIFICATION OF THE MACHI	
	1 Results of the Machine-Trained AHNM Model	
	2 FEA Verification of the Machine-Trained AHNM Model	31
5 Pl	CHAPTER FIVE – EXPERIMENTAL TEST RIG SETUP AND DCEDURE	39
	1 Test Rig Unit	42 45
	5.1.3 The Pressure Control unit	46 46
	 5.2.2 The effect of friction on the T-tube hydroforming experiments 5.2.3 Copper tube work hardening 5.2.4 Results of the modified AHNM models 	48
	5.2.5 Experimental Results	
6	CHAPTER SIX – DISCUSSION, CONCLUSIONS AND FUTURE WOR	
	1 Achievements 2 Conclusions 3 Future Work.	59
R	FERENCES	61
\mathbf{A}	PENDICES	65
	PPENDIX (A) Python Script to Interact with ABAQUS PPENDIX (B) Parameters Obtained from ABAQUS PPENDIX (C) Python Script for RF & DT PPENDIX (D) Python Script for Multi Linear regression PPENDIX (E) Pyomo Python Script for Array No.1 PPENDIX (F) Pyomo Python Script for Array No.2 PPENDIX (G) Pyomo Python Script for Array No.3 PPENDIX (H) Pyomo Python Script for Array No.4	70 74 76 78
	PPENDIX (I) Pyomo Python Script for Array No.5	84 86 88
	PPENDIX (M) Modified AHNM model in Pyomo for Tube Thickness 0.33mm PPENDIX (N) Modified AHNM model in Pyomo for Tube Thickness 0.80mm PPENDIX (O) Drawings of Test Rig	96

List of Tables

Table 3.1: Copper tube material properties	19
Table 3.2: Results of Mesh sensitivity analysis	23
Table 3.3: Arrange of Accuracy scores of the trained machine learning algorithms	27
Table 4.1: Arrays of various steps and values for the vertical protrusion	31
Table 4.2: Arrays No.1 to No.7 protrusion heights for AHNM and FEM	33
Table 4.3: Results summary of Arrays No.1 to 7 for AHNM and FEM	34
Table 5.1: The allowable thicknesses for different tube thickness	47
Table 5.2: Results summary of modified AHNM for different tube thicknesses	51

List of Figures

Figure 1.1: Main defects of THF process [1]
Figure 1.2: Types of Hydroforming [2]
Figure 1.3: Difference between High and Low-pressure tube hydroforming [3]3
Figure 1.4: High-pressure tube hydroforming [4]4
Figure 1.5: Hydro-formed junction [5]5
Figure 1.6: Research Plan
Figure 3.1: The adaptive heuristic framework proposed
Figure 3.2: The Dimensions of the final product
Figure 3.3: FEA model (a) the applied boundary conditions on the model, (b) the applied internal pressure on the tube surface, (c) the applied axial load on tube edge21
Figure 3.4: Flow chart of the iterative process proposed to produce the initial FEM \dots 22
Figure 3.5: Thickness distribution of the simulated model
Figure 4.1: Optimized AHNM progress of (a) Internal pressure and (b) Axial load through non-circular tube hydroforming
Figure 4.2: Results of the AHNM and the FEM loading paths for Arrays No.1 to No.7, (a) Internal pressure and (b) Axial load
Figure 4.3: Results of Arrays 1 to 3, thickness distribution and maximum protrusion36
Figure 4.4: Results of Array 4, thickness distribution and maximum protrusion37
Figure 4.5: Results of Array 5, thickness distribution and maximum protrusion37
Figure 4.6: Results of Array 6, thickness distribution and maximum protrusion38
Figure 4.7: Results of Array 7, thickness distribution and maximum protrusion38
Figure 5.1: The Main Units of the Test Rig
Figure 5.2: Layout of Hydraulic Circuit of the Test Rig Set-Up40
Figure 5.3: Components of the Hydroforming Unit
Figure 5.4: The Hydroforming Die
Figure 5.5: Assembly of the Lateral Presses
Figure 5.6: Power Unit
Figure 5.7: Components of the Pressure Control Unit
Figure 5.8: The burst of the as-received tube (a) Bursting at the beginning of process $IP = 6 MPa$ and (b) Bursting during Process without Annealing $IP = 8 MPa$ 49
Figure 5.9: Wrinkled tubes (a) Wrinkling at the middle of the tube and (b) Wrinkling at the end of the tube
Figure 5.10: The Annealing Process of the Tube (a) Before the Process (b) During the Process

Figure 5.11: The Annealed sample of Tube after reaching the Forming	51
Figure 5.12: Results of the modified AHNM Loading Paths for Different Thicknes (a) Internal pressure and (b) Axial load	
Figure 5.13: Deformed Tube of Thickness 0.8 mm	54
Figure 5.14: Results of the modified AHNM Loading Path for 0.8 mm Thickness Internal pressure and (b) Axial load	` ′
Figure 5.15: Deformed Tube of Thickness 0.33 mm	56
Figure 5.16: Results of the modified AHNM Loading Path for 0.33mm Thickness Internal pressure and (b) Axial load	
Figure 5.17: Failure of 0.2 mm thickness tube	58
Figure 5.18: Machining to Produce Tube Thickness 0.2 mm from 0.8 mm	58

Nomenclature

Symbol	Description
AL_t	Axial load at time t
AS_t	Maximum axial stress within the area of the non-circular protrusion at time <i>t</i>
DT	Decision Tree algorithm
FEA	Finite Element Analysis
FEM	Finite Element Modeling
HS_t	Maximum hoop stress within the area of the non-circular protrusion at time <i>t</i>
IE_t	Average internal energy of the whole deformed part at time <i>t</i>
IP_t	Internal pressure inside the tube at time <i>t</i>
KE_t	Average kinetic energy of the whole deformed part at time <i>t</i>
MAS	The maximum allowable deformation stress
MAT	The maximum allowable thickness
$MaxT_t$	Maximum thickness at the area of the non-circular protrusion at time t
MD_t	Maximum vertical displacement within the area of the non-circular
	protrusion at time t
MIAS	The minimum allowable deformation stress, and the
MIAT	The minimum allowable thickness
ML	Machine Learining
$MinT_t$	Minimum thickness at the area of the non-circular protrusion at time t
MS_t	Maximum principal strain within the area of the non-circular
	protrusion at time t
MT_t	Minimum thickness at the area of the non-circular protrusion at time t
N	Total number of periods
n	Material hardening exponent
PP_t	Punch pressure at time <i>t</i>
RF	Random Forest algorithm
T-Tube	Tube with lateral protrusion
T- protrusion	Lateral protrusion of Tube
t	Time period
$\varepsilon_{critical}$	The critical strain at which instability occurs
σ_{axial}	The axial stress within the tube
σ_{hoop}	The circumferential stress within the tube