

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

ANALYSIS OF RC BEAMS WITH OPENINGS STRENGTHENED WITH CFRP

By

Yasser Mohamed Magdy Hassan Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

ANALYSIS OF RC BEAMS WITH OPENINGS STRENGTHENED WITH CFRP

By Yasser Mohamed Magdy Hassan Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Hany Ahmed Ali Abdalla

Professor of Concrete structures Structural Engineering Department Faculty of Engineering, Cairo University, Egypt

ANALYSIS OF RC BEAMS WITH OPENINGS STRENGTHENED WITH CFRP

By Yasser Mohamed Magdy Hassan Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Hany Ahmed Ali Abdalla,
Professor of Concrete Structures, Cairo University

Prof. Dr. Akram Mohamed Torkey,
Professor of Concrete Structures, Cairo University

Prof. Dr. Ghada Diaa Abd-Elhameed,
Housing and Building National Research Center

(Thesis Main Advisor)

(Internal Examiner)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Yasser Mohamed Magdy Hassan Morsy

Date of Birth: 14/7/1993 **Nationality:** Egyptian

E-mail: yasser_magdy@outlook.com

Phone: 01005002468

Address: Nasr City - Cairo - Egypt

Registration Date: 01/10/2018 **Awarding Date:**/2021

Degree: Master of Science **Department** Structural Engineering

Supervisors:

Prof. Dr. Hany Ahmed Ali Abdalla

Examiners:

Prof. Dr. Hany Ahmed Ali Abdalla (Thesis main advisor)
Prof. Dr. Akram Mohamed Torkey (Internal examiner)
Prof. Dr. Ghada Diaa Abd-Elhameed (External examiner)

Housing and Building National Research Center

Title of Thesis:

ANALYSIS OF RC BEAMS WITH OPENINGS STRENGTHENED WITH CFRP

Key Words:

RC beams; web opening; CFRP sheets; strengthening; finite element

Summary:

Creating transvers web opening in existing reinforced concrete beams, to provide a convenient passage for utility ducts, causes local cracking around the opening region leading to a decrease in stiffness and load-carrying capacity of the beam. (ANSYS) software was used to investigate the effect of opening size and shape on simply supported RC beams under four-point loading. Also, the effectiveness of using carbon fiber reinforced polymer (CFRP) sheets, as strengthening around the opening, was studied. A total of 35 (FE) models were created, 10 of them were compared with experimental results to ensure the validity of the (FE) models. The results showed that, circular and rounded corner openings had less crack propagation around openings at early stages of loading and higher ultimate load than rectangular openings. Also, using (CFRP) sheets can prevent early cracking around the opening and retrieve most of the original strength of the solid RC beam depending on the opening size.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

I would like to express my deepest gratitude to my supervisor **Prof. Dr. Hany Abdallah** for his guidance, advice and unlimited support I received from him. I also want to thank my family, friends and everyone who supported me throughout my path.

Table of contents

Disclain	ner	i
Acknow	ledgments	ii
Table of	f contents	iii
List of T	Tables	v
List of I	Figures	vi
Abstrac	t	X
Chapter	1: Introduction	1
1.1.	General	1
1.2.	Research objective	
1.3.	Scope	
1.4.	Thesis organization	
	r 2 : Literature Review	
•		
2.1.	General	
2.2.	Creating openings in RC beams	
2.3.	Strengthening of openings using internal reinforcement	
2.4.	Background of Fiber reinforced polymers (FRP)	
2.4.	71	
2.4.		
2.5.	Strengthening of RC beams without openings using FRP	
2.6.	Strengthening of RC beams with openings using FRP	17
2.7.	Critical observations from the literature	33
Chapter	3 : Verification of Numerical Modeling	34
3.1.	General	34
3.2.	Finite element model (FEM)	34
3.2.	1. Used material elements	34
3.2.	2. Used material properties	35
3.	2.2.1. Concrete	35
	2.2.2. Steel	
	2.2.3. Material properties of Carbon Fiber Reinforced Polymer	
3.2	$\boldsymbol{\mathcal{E}}$	
	2.3.1. Steel reinforcement	
	2.3.3. CFRP configurations	
	2.3.4. Solution controls	
3.3.	Verification of models	43
Chapter	· 4 : Parametric Study	49
<i>1</i> 1	Introduction	/10

4.2.	Studied parameters	49
4.2.1	Rectangular and square openings	50
4.2	1.1. Un-strengthened square openings	51
	1.2. Un- strengthened rectangular openings	
	1.3. Strengthened square and rectangular openings	
4.2.2		
	2.1. Un-strengthened openings	
4.2.3	2.2. Strengthened openings	
	Rectangular openings with rounded corners	
	3.2. Strengthened openings	
4.3.	Summary of FEM results	
4.4.	Discussion of FEM results	
4.4.1	Un-strengthened square openings	85
4.4.2		
4.4.3		
4.4.4	Strengthened rectangular openings	87
4.4.5	Un-strengthened circular openings	87
4.4.6	Strengthened circular openings	89
4.4.7	Strengthened and un-strengthened Rectangular openings with roun	nded corners
		90
4.5.	Recommendations for the design engineer	90
Chapter	5 : Theoretical Design	92
5.1.	General	92
5.2.	Concrete contribution in shear resistance	
5.3.	ECP-208 [16]	93
5.4.	ACI 440.2R-08 [32]	
5.5.	CSA Standard S806-02 [33]	
5.6.	Khalifa et al. model [34]	
5.7.	Summary	
	6 : Conclusions and Recommendations	
_		
6.1.	Summary	
6.2.	Conclusions	
6.3.	Recommended future work	101
Deference	oc	102

List of Tables

Table 2.1: Short brief for the application of different types of fibers as recommended	by
ECP 208 [16]	10
Table 2.2: Results of tested beams by Shaishav and Tarak (2014) [17]	12
Table 2.3: Comparison between experimental and numerical results by Jayajothi et al.	
(2013) [18]	13
Table 2.4: Details of tested beams by Allam and Ebeido (2003) [19]	13
Table 2.5: Test results by Allam and Ebeido (2003) [19]	14
Table 2.6: Tested beam specimens by Chin et al. (2011) [23]	19
Table 2.7: Summary of test results by Chin et al. (2011) [23]	20
Table 2.8: Summary of test results by Chin et al. (2015) [24]	21
Table 2.9: Summary of test results by Chin et al. (2015) [24]	22
Table 2.10: Summary of test results by Maaze and Shoeb (2018) [25]	24
Table 2.11: Mechanical properties of CFRP fabrics by Abdalla et al. (2003) [27]	
Table 2.12: Details and results for beams tested by Abdalla et al. (2003) [27]	29
Table 3.1: Material properties of concrete used in the model	37
Table 3.2: Material properties of reinforcement steel used in the model	38
Table 3.3: Material properties of CFRP sheets used in the model	39
Table 3.4: Material properties of epoxy used in the model	39
Table 3.5: Comparison between experimental and FEM ultimate load	47
Table 4.1: Models investigated in the parametric study	50
Table 4.2: Summary of results obtained from the parametric study for each model	84
Table 5.1: Shear contribution of concrete (V _c) for each beam	93
Table 5.2: Shear carried by CFRP sheets (V _f) and total shear resistance at the opening	г Э
location (V _r) using ECP-208 [16] equations	94
Table 5.3: Shear carried by CFRP sheets (V _f) and total shear resistance at the opening	г Э
location (V _r) using ACI 440.2R-08 [32] equations	
Table 5.4: Shear carried by CFRP sheets (V _f) and total shear resistance at the opening	5
location (V _r) using CSA Standard S806-02 [33] equations	
Table 5.5: Shear carried by CFRP sheets (V _f) and total shear resistance at the opening	5
location (V _r) using Khalifa et al. model [34]	97
Table 5.6: Shear strength of beams RO9-S and RO10-S using Khalifa et al. model for	•
equivalent square opening [34]	
Table 5.7: Comparison between shear strength values using different design equations	
[16, 32-34]	
Table 5.8: Average difference between numerical model and each design equation [16]	
32-34]	99

List of Figures

Fig. 2.1: Reinforcement details around the opening by Mansur and Tan (1999) [1]	5
Fig. 2.2: Types of failure in beams with small openings by Mansur and Tan (1999) [1] 5
Fig. 2.3: Load-Deflection curve for control beam by Shaishav and Tarak (2014) [17].	11
Fig. 2.4: Load-Deflection curve for bottom single strip beam by Shaishav and Tarak	
(2014) [17]	11
Fig. 2.5: Longitudinal and cross-section of Beam1 by Jayajothi et al. (2013) [18]	12
Fig. 2.6: Longitudinal and cross-section of Beam2 by Jayajothi et al. (2013) [18]	
Fig. 2.7: Crack pattern of some retrofitted beams group (I) by Allam and Ebeido (200	
[19]	
Fig. 2.8: Crack pattern of some retrofitted beams (S-1) and (UW-1) by Allam and	
Ebeido (2003) [19]	15
Fig. 2.9: Details of beams used by Santhakumar et al. (2004) [20]: (a) Beam wrapped	
with CFRP, (b) Finite element model	
Fig. 2.10: Load-Deflection relation for un-cracked retrofitted beams by Santhakumar	
al. (2004) [20]	
Fig. 2.11: Load-Deflection relation for pre-cracked retrofitted beams by Santhakumar	10 ta:
al. (2004) [20]	
Fig. 2.12: Details of beams used by Mansur et al. (1999) [21]: (a) Reinforcement	10
details, (b) Arrangement of FRP	17
Fig. 2.13: Reinforcement details of tested beams by Allam (2005) [22]	
Fig. 2.14: Strengthening around the opening using CFRP and steel plates by Allam	10
	10
(2005) [22]Fig. 2.15: Crack pattern and failure mode of un-strengthened beams tested by Chin et	
al. (2011) [23]	
	20
Fig. 2.16: Crack pattern and failure mode of strengthened beams tested by Chin et al.	21
(2011) [23]	
Fig. 2.17: Crack pattern and failure mode of un-strengthened beams tested by Chin et	
al. (2015) [24]	
Fig. 2.18: Crack pattern and failure mode of strengthened beams tested by Chin et al.	
(2015) [24]	
Fig. 2.19: Schematic of test setup by Maaze and Shoeb (2018) [25]	23
Fig. 2.20: Crack pattern of control beam with openings tested by Maaze and Shoeb	2.4
(2018) [25]	24
Fig. 2.21: Crack pattern of strengthened beam with opening using CFRP tested by	2.4
Maaze and Shoeb (2018) [25]	
Fig. 2.22: Crack pattern and de-ponding of CFRP observed in rehabilitated beams wit	
opening tested by Maaze and Shoeb (2018) [25]	
Fig. 2.23: Beams under four point loading by Almusallam et al. (2018) [26] (a) solid	
beam (b) beam with opening	25
Fig. 2.24: Beams under center point loading by Almusallam et al. (2018) [26] (a) soli	
beam (b) beam with opening length=450 mm (c) beam with opening length=900 mm	
Fig. 2.25: Details of strengthening with scheme-1 by Almusallam et al. (2018) [26] (a	
First CFRP layer (b) second CFRP layer	
Fig. 2.26: Details of strengthening with scheme-2 by Almusallam et al. (2018) [26] (a	
First GFRP layer (b) second GFRP layer (c) steel plates	
Fig. 2.27: Test set-up by Abdalla et al. (2003) [27]	28

Fig.	. 2.28: Internal steel reinforcement by Abdalla et al. (2018) [27]	29
Fig.	. 2.29: Types of CFRP configurations by Abdalla et al. (2003) [27]	29
_	. 2.30: Load-deflection relation for un-strengthened beams by Abdalla et al. (2003	
_]	
Fig.	2.31: Ultimate load capacity for tested beams by Abdalla et al. (2003) [27]	30
_	. 2.32: Load-deflection behavior of openings (200x100mm) by Abdalla et al. (200	
]	
	2.33: Load-deflection behavior of openings (300x100mm) by Abdalla et al. (200	
	2.34: Crack pattern around the opening by Abdalla et al. (2003) [27]	
_	2.35: Free-body diagram of beam opening by Abdalla et al. (2003) [27]	
	. 3.1: SOLID65 element in ANSYS [28]	
_	. 3.2: LINK180 element in ANSYS [28]	
_	. 3.3: SOLID185 element in ANSYS [28]	
_	3.4: Simplified compressive uniaxial stress-strain relation for concrete	
_	. 3.5: Stress-strain curve used for concrete material in FEM	
_	. 3.6: Stress-Strain relation for steel reinforcement	
	. 3.7: Meshing of FEM Model	
_	3.8: Steel reinforcement along the beam	
	3.9: U-shaped stirrups at the location of the opening	
_	. 3.10: Boundary conditions and loading	
_	. 3.11: CFRP configuration type 1	
_	. 3.12: CFRP configuration type 2	
_	. 3.13: Load-deflection relation for solid beam	
Fig.	. 3.14: Load-deflection relation for un-strengthened opening ($100 \times 100 \text{ mm}$) (UO	7)
		44
Fig.	. 3.15: Load-deflection relation for un-strengthened opening ($100 \times 200 \text{ mm}$) (UO	8)
		.44
Fig	. 3.16: Load-deflection relation for un-strengthened opening ($100 \times 300 \text{ mm}$) (UO	
rig.		
•••••		45
Fig.	. 3.17: Load-deflection relation for un-strengthened opening (150 × 300 mm)	
(UC	010)	45
Fig.	. 3.18: Load-deflection relation for strengthened opening ($100 \times 200 \text{ mm}$) (RO3)	46
U		
_	. 3.19: Load-deflection relation for strengthened opening ($100 \times 300 \text{ mm}$) (RO4)	
	. 3.20: Column chart showing the difference in ultimate load for all beams	
	. 3.21: Crack pattern of tested beam UO10 by Abdalla et al. [27]	
	. 3.22: Crack plot for FEM of beam UO10	
	. 4.1: Load-deflection for un-strengthened beams with rectangular opening	
_	. 4.2: Crack-crush plot of concrete for beam UO1-S	
_	. 4.3: Crack-crush plot of concrete for beam UO2-S	
	. 4.4: Deformed shape and deflection of beam UO3-S	
	. 4.5: Crack-crush plot of concrete for beam UO3-S	
	. 4.6: Deformed shape and deflection of beam UO6-S	
	. 4.7: Crack-crush plot of concrete for beam UO6-S	
	. 4.8: Deformed shape and deflection of beam UO7-S	
	. 4.9: Crack-crush plot of concrete for beam UO7-S	
Fig.	. 4.10: Load-deflection relation for un-strengthened beams with constant height	.55
Fig.	. 4.11: Deformed shape and deflection of beam UO8-S	56

Fig. 4.12: Crack-crush plot of concrete for beam UO8-S	.56
Fig. 4.13: Load-deflection relation for strengthened beam RO1-S	.57
Fig. 4.14: Deformed shape and displacement in Y direction for beam RO1-S	.57
Fig. 4.15: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	n
of CFRP sheets second layer for beam RO1-S	
Fig. 4.16: Crack-crush plot of concrete for beam RO1-S	.58
Fig. 4.17: Load-deflection relation for strengthened beam RO2-S	.59
Fig. 4.18: Deformed shape and displacement in Y direction for beam RO2-S	
Fig. 4.19: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO2-S	.60
Fig. 4.20: Crack-crush plot of concrete for beam RO2-S	.60
Fig. 4.21: Load-deflection relation for strengthened beam RO3-S	.61
Fig. 4.22: Deformed shape and displacement in Y direction for beam RO3-S	
Fig. 4.23: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO3-S	
Fig. 4.24: Crack-crush plot of concrete for beam RO3-S	
Fig. 4.25: Load-deflection relation for strengthened beam RO4-S	.63
Fig. 4.26: Deformed shape and displacement in Y direction for beam RO4-S	
Fig. 4.27: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO4-S	
Fig. 4.28: Crack-crush plot of concrete for beam RO4-S	.64
Fig. 4.29: Load-deflection relation for strengthened beam RO5-S	
Fig. 4.30: Deformed shape and displacement in Y direction for beam RO5-S	
Fig. 4.31: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO5-S	
Fig. 4.32: Crack-crush plot of concrete for beam RO5-S	
Fig. 4.33: Load-deflection relation for strengthened beam RO6-S	
Fig. 4.34: Deformed shape and displacement in Y direction for beam RO6-S	
Fig. 4.35: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO6-S	
Fig. 4.36: Crack-crush plot of concrete for beam RO6-S	
Fig. 4.37: Load-deflection relation for un-strengthened circular beams	
Fig. 4.38: Crack-crush plot of concrete for beam UO9-S	
Fig. 4.39: Crack-crush plot of concrete for beam UO10-S	
Fig. 4.40: Deformed shape and deflection of beam UO11-S	
Fig. 4.41: Crack-crush plot of concrete for beam UO11-S	
Fig. 4.42: Deformed shape and deflection of beam UO12-S	
Fig. 4.43: Crack-crush plot of concrete for beam UO12-S	
Fig. 4.44: Deformed shape and deflection of beam UO13-S	
Fig. 4.45: Crack-crush plot of concrete for beam UO13-S	
Fig. 4.46: Load-deflection relation for beams UO12-S and RO9-S	
Fig. 4.47: Deformed shape and deflection of beam RO9-S	
Fig. 4.48: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO9-S	
Fig. 4.49: Crack-crush plot of concrete for beam RO9-S	
Fig. 4.50: Load-deflection relation for beams UO13-S and RO10-S	
Fig. 4.51: Deformed shape and deflection of beam RO10-S	.76
Fig. 4.52: Stresses in X-direction of CFRP sheets first layer and stresses in Y-direction	
of CFRP sheets second layer for beam RO10-S	
Fig. 4.53: Crack-crush plot of concrete for beam RO10-S	