

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Potential Therapeutic Outcomes Of The Addition of Vitamin D to Type 2 Diabetes Mellitus Treatment

Thesis

Submitted for Partial Fulfillment of M. Sc. Degree in Pharmaceutical Science (Pharmacology and Toxicology)

By

The Pharmacist: Yasmin Mohamed Khairy

Bachelor of Pharmaceutical Sciences
Ain Shams University
2002

Supervised by

Dr. Ebtehal EL-Demerdash

Professor and head of Pharmacology and Toxicology Faculty of Pharmacy Ain Shams University

Dr. Mohamed Reda Halawa

Professor of Medicine and Endocrinology Faculty of Medicine Ain Shams University

Dr. Mai Tolba

Associate Professor of Pharmacology and Toxicology Faculty of pharmacy Ain Shams University

سورة البقرة الآية: ٣٢

Scknowledgment

In the name of AUAH, The Most Gracious and the Most Merciful. Peace and blessings be upon our prophet Mohammad and his good followers till the day of judgment.

At the beginning, I wish to express my sincere thanks to my supervisors:

Prof. Dr. Ebtehal El -Demerdash, Professor and Headmaster of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University for her kind support and guidance throughout the work.

Prof. Dr. Mohamed Reda Halawa, Professor of Internal Medicine, Endocrinology, Faculty of Medicine, Ain Shams University for his kind help in clinical work.

Associate . Prof. Dr. Mai Tolba, Associate professor of pharmacology and toxicology, Faculty of pharmacy Ain Shams University, for her kind guidance throughout the work.

I would like to express my thanks to my family: my mother and my father for giving me all the love and wholehearted support to continue

Yasmin Khairy

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Abstract	12
Type 2 Diabetes Mellitus	1
Vitamin D and Type 2 Diabetes Mellitus	28
Aim of the Work	51
Subjects and Methods	52
Results	81
Discussion	106
Summary	112
References	116
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Treating and supplementing adults vitamin D deficiency	
Table (2):	Baseline characteristics of type 2 Dia Mellitus patients	
Table (3):	Comparative analysis for basis glycemic, antioxidant and inflamm biomarkers in the two studied gratients who receive vitamin D and who didn't receive the vitamin)	atory roups those
Table (4):	Comparative analysis for basis glycemic, inflammatory and antiox parameters in the two studied gratients who receive vitamin D and who didn't receive the vitamin)	idant roups those
Table (5):	Effects of Vitamin D Supplementation glycemic, inflammatory and antiox parameters in patients who revitamin D after six months of treatme	idant eceive
Table (6):	Comparison between patients who revitamin D after treatment and those didn't receive the vitamin regardlycemic, inflammatory and antiox parameters	e who rding idant
Table (7):	Spearman correlation for all part before treatment	tients
Table (8):	Spearman correlation in patients receive vitamin D after treatment	

List of Figures

Fig. No.	Title Page N	V o.
Figure (1):	The Pathogenesis of Type 2 Diabetes	
	Mellitus	9
Figure (2):	Host genetics, gut microbiota short chain	
	fatty acids and risk of diabetes	
Figure (3):	Classic symptoms of type 2 DM	13
Figure (4):	The site of action of antidiabetic	~
T: (=)	medication	
Figure (5):	Chemical structure of vitamin D ₂ and D3	
Figure (6):	Food sources of vitamin D	29
Figure (7):	The synthesis and metabolism of vitamin	
	D in the regulation of mineral homeostasis	0.1
D . (0)	and nonskeletal function	31
Figure (8):	Role of vitamin D in insulin secretion and	40
T' (0)	insulin sensitivity	
_	Standard curve of insulin	
_	Standard curve of TNF -α	
_	Standard curve of IL-6	
•	Standard curve of HbA1c	
•	Standard curve for vitamin D	79
Figure (14):	Weight and BMI in patients who didn't	
	receive vitamin D and those who receive	0.4
7. (4.5)	the vitamin before treatment	84
Figure (15):	Body weight status in patients who didn't	
	receive vitamin D and those who receive	2.4
	the vitamin before treatment	84
Figure (16):	Vitamin D status in patients who didn't	
	receive vitamin D and those who receive	o -
	the vitamin before treatment	87

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (17):	HOMA – IR, insulin and HBA		
	patients who didn't receive vitamin		
	those who receive the vitamin		97
Figure (19).	FBG in patients who didn't receive vi		01
Figure (10).	D and those who receive the vitamin		
	treatment		88
Figure (19):	TNF- alpha in patients who didn't r		
8 (- /	vitamin D and those who receiv		
	vitamin before treatment		88
Figure (20):	IL - 6 in patients who didn't r		
	vitamin D and those who receiv		
	vitamin before treatment		89
Figure (21):	TAO in patients who didn't receive vi		
	D and those who receive the vitamin		00
Figure (99).	treatment		89
Figure (22):	MDA in patients who didn't r vitamin D and those who receiv		
	vitamin before treatment		90
Figure (23)	: Vitamin D level in patients who r		
g (_0)	vitamin D before and after treatment		93
Figure (24):	HOMA- IR, insulin. HBA1C in pa	tients	
_	who receivevitamin D before and		
	treatment		93
Figure (25):	FBG in patients who receive vitar		
()	before and after treatment		94
Figure (26):	TNF- α in patients who receive vita:		0.4
E' (05)	before and after treatment		
Figure (27):	IL-6 in patients who receive vitar		
Figure (28).	before and after treatment		90
1 igui e (20).	before and after treatment		95
Figure (29):	TAC in patients who receive vitar		
-8 (-3)*	before and after treatment		96

List of Figures (Cont...)

Fig. No.	Title Pag	ge	No.
Figure (30):	Vitamin D in patients who receive vitamed D after treatment and those who didn	'nt	0.0
Figure (31):	receive the vitamin	D ı't	98
Figure (32):	Spearman correlation regarding weight all patients before treatment	in	
Figure (33):	Spearman correlation regarding BMI in a patients before treatment	ıll	
Figure (34):	Spearman correlation regarding FBG in a patients before treatment	ıll	
	Spearman correlation regarding HBA1C all patients before treatment	• • • •	101
_	Spearman correlation regarding TNF-α all paitents before treatment	• • • •	102
_	Spearman correlation regarding IL-6 in a patients before treatment	••••	102
rigure (38):	Spearman correlation regarding HOMA-lin patients who receive vitamin D after treatment	\mathbf{er}	104
Figure (39):	Spearman correlation regarding TAC patients who receive vitamin D aft	in	104
Figure (40):	treatment	••••	104
3 - \ - \ - \ -	insulin un patients who receive vitamin after treatment	D	105

List of Abbreviations

Abb.	Full term
ADA	.American Diabetes Association
AGEs	.Advanced glycation end products
	.Alpha glucosidase inhibitors
	Antigen presenting cells
<i>BMD</i>	. Bone mineral density
BMI	. Body mass index
<i>BPD</i>	.Biliopancreatic diversion
<i>BpD-DS</i>	Bilio pancreatic diversion with duodenal switch
<i>CRP</i>	. C- Reactive protein
CVD	. Cardiovascular disease
D 2	.VitaminD2(ergocal ciferol)
D 3	. Vitamin D3 (Cholecalciferol)
<i>DBp</i>	.D-Binding protein
<i>DM</i>	. Diabetes mellitus
<i>DN</i>	$. Diabetic\ nephropathy$
DPP-4	.Dipeptidyl peptidase -4
DR	$. Diabetic\ retinopathy$
EASD	. European Association for the study of diabetes
ELISA	.Enzyme linked immunosorbent assay
Fas/Fas-L	.Fas related pathways
<i>FBG</i>	. Fasting blood glucose
FDA	. Food and drug administration
FGF-19	Fibroblast growth factor 19
FGF-23	. Fibroblast growth factor 23
<i>FXR</i>	.Farnesoid -X receptor
<i>GFR</i>	. Glomerular filtration rate
<i>GIP</i>	$. Glucose\ dependant\ insulinotropic\ polypeptide$
<i>GLp-1</i>	. Glucagon like peptide 1

List of Abbreviations (Cont...)

Abb.	Full term
GWAS	Genome wide association studies
$Hb\ A1c\dots$	Glycated hemoglobin
HOMA-IR.	Homeostatic model assessment of insulin resistance
HPFS	Health – professional follow –up study
<i>HRB</i>	Horseradish peroxidase
IL - 1 RA	Interleukin 1 receptor antagonist
<i>IL -6</i>	Interleukin 6
IL -1 β	Interleukin 1 eta
<i>IL-12</i>	Interleukin 12
<i>IM</i>	Intramuscular
INF - γ	Interferon γ
<i>IQR</i>	Interquartile range
LAGB	Laparoscopic adjustable gastric Banding
LSG	Laparoscopic sleeve gastrectomy
<i>MDA</i>	Malondial dhy de
<i>MI</i>	$My ocardial\ in farction$
<i>MS</i>	$Multiple\ sclerosis$
NF-κb	Nuclear factor- κB
NHANES-I	IIThird national health and nutrition examination survey
<i>NIH</i>	National institute of health
<i>OGTT</i>	Oral glucose Tolerance test
PKC	Protein kinase C
PPAR- gami	maPeroxisome proliferator activated receptor- γ
<i>PHPT</i>	Primary hyperparathyroidism
<i>PTH</i>	Parathyroid hormone
RAAS	Renin angiotensin aldosterone system

List of Abbreviations (Cont...)

Abb.	Full term
Ros	Reactive oxygen species
<i>RR</i>	Rapid response
<i>RYGB</i>	Roux en -Y-gastric by pass
SGLT2	Sodium glucose Co – transporter 2
<i>SHPT</i>	Secondary hyperparathyroidism
<i>T1DM</i>	Type 1 Diabetes mellitus
<i>T2DM</i>	Type 2 diabetes mellitus
<i>TAC</i>	Total antioxidant capacity
$TH_1 \dots TH_1$	T helper 1
$TH_2 \dots TH_2$	T helper 2
TLRs	Toll –like receptors
<i>TMD</i>	Tetramethyl benzidine
TNF- α	$Tumor\ necrosis\ factor\ -a$
<i>TZDS</i>	This zolid inediones
<i>VD</i>	$Vitamin\ D$
<i>VDD</i>	Vitamin D deficiency
<i>VDRs</i>	Vitamin D Receptors
VDR-RXR	$Vitamin\ D\ receptor\ -Retinoic\ acid\ x-receptor$
<i>VDT</i>	Vitamin D toxicity
<i>WHO</i>	World Health Organization

Abstract

Diabetes mellitus (DM) is a group of metabolic disorders Characterized by chronic hyperglycaemic condition resulting from defects in insulin secretion insulin action or both. Type2 Diabetes Mellitus (T2DM) is the predominant form of diabetes and account at least 90 % of all cases of DM. Insulin resistance is a risk factor for diabetes. Evidence shows that vitamin D (VD) has an important role in modifying the risk of Type 2 Diabetes Mellitus (T2DM), especially among insulin resistant diabetic patients. Recently a novel association between insulin resistance and vitamin D deficiency has been proposed. Mechanism of involvement of vitamin D in overcoming insulin resistance includes promotion of pancreatic \(\beta \) cell function, enhancement of insulin sensitivity and suppression of pancreatic cells inflammation. In the current research we investigate the association between hypovitaminosis D and T2DM .And also we will study the effect of vitamin D supplementation on glycaemic status, oxidative stress status and inflammatory markers in T2DM patients. Therefore, forty T2DM patients were assessed for diabetic, inflammatory and antioxidant parameters. After VD supplementation for six months for the intervention group of patients (n=20), there was significant improvement in VD level, Homeostatic model assessment of insulin resistance (HOMA - IR), Fasting blood glucose (FBG), glycated haemoglobin (HbA1c), serum insulin, interleukin 6 (IL-6), tumor necrosis factor- α (TNF- α), total antioxidant capacity (TAC), malondialdehyde (MDA). In Conclusion: Vitamin D has a promising effect in treatment of Type 2 Diabetes as there is a significant improvement in glycaemic inflammatory and oxidative stress parameters in Type 2 Diabetes mellitus patients.

Keywords: Type 2 Diabetes Mellitus, cytokines, HOMA – IR, malondialdehyde, Vitamin D, insulin resistance.