

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

DESIGN OF MM-WAVE PHASE INVARIANT VARIABLE GAIN AMPLIFIER AND LOW PHASE NOISE VOLTAGE CONTROLLED OSCILLATOR FOR 5G TRANSCEIVERS

By

Yahia Zakaria Mohamed Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

DESIGN OF MM-WAVE PHASE INVARIANT VARIABLE GAIN AMPLIFIER AND LOW PHASE NOISE VOLTAGE CONTROLLED OSCILLATOR FOR 5G TRANSCEIVERS

By **Yahia Zakaria Mohamed Ibrahim**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Ahmed N. Mohieldin

Professor
Electronics and Communications
Engineering
Faculty of Engineering, Cairo University

Professor
Electronics and Communications
Engineering
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

DESIGN OF MM-WAVE PHASE INVARIANT VARIABLE GAIN AMPLIFIER AND LOW PHASE NOISE VOLTAGE CONTROLLED OSCILLATOR FOR 5G TRANSCEIVERS

By Yahia Zakaria Mohamed Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Electronics and Communications Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed N. Mohieldin,

Dr. Mohamed A. Y. Abdalla,

Prof. Dr. Islam A. Eshrah,

Prof. Dr. Mohamed A. El-Nozahi,

Associate Professor

Faculty of Engineering, Ain Shams University

Thesis Main Advisor

Advisor

Internal Examiner

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer:** Yahia Zakaria Mohmed Ibrahim

Date of Birth: 30/9/1994 **Nationality:** Egyptian

E-mail: yahiazaakaria@eng.cu.edu.eg

Phone: +20 1143409109

Address: 5 Compound Ganna Elsheikh Zayed

Registration Date: 1/10/2017 **Awarding Date:** -/-/2021

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors: Prof. Dr. Ahmed N. Mohieldin

Dr. Mohamed A. Y. Abdalla

Examiners: Prof. Dr. Ahmed N. Mohieldin (Thesis main advisor)

Dr. Mohamed A. Y. Abdalla (advisor)

Prof. Dr. Islam A. Eshrah (Internal examiner)

Dr. Mohamed A. El-Nozahi

Associate Professor

Faculty of Engineering, Ain Shams University

Title of Thesis:

Design of mm-wave phase invariant Variable Gain Amplifier and low phase noise Voltage Controlled Oscillator for 5G transceivers

Key Words:

5G transceivers – VGA – current steering – wideband – VCO

Summary:

This Thesis presents the design and implementation of two important building blocks for phased arrays used in 5G transceivers; namely Variable Gain Amplifier (VGA) and Voltage Controlled Oscillator (VCO). It proposes the design and implementation of a current steering VGA where novel techniques are adopted to achieve very low phase and gain errors across the entire gain range. The proposed current steering VGA achieves a wideband response and shows an excellent correlation between the measurements and the simulations. A Novel VGA architecture is also introduced in this thesis which is based on the concept of ac currents addition and subtraction to achieve inherently wideband phase invariant response without any .trade-off with the other VGA parameters such as gain, bandwidth, linearity and noise In addition, this thesis proposes the design and implementation of an LC cross-coupled VCO and a novel transmission line based VCO. Coarse and fine tuning are used together with a fixed capacitor technique to achieve wide tuning range for the LC based VCO. The transmission line based VCO provides a square wave at the output of the VCO with very low power consumption, this can be used in high speed digital applications. Varactor is added at the middle of the transmission line in order to add tuning to the VCO by changing the electrical length of the transmission line.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Yahia Zakaria Mohamed Ibrahim	Date:
Signature:	

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I wish to express my gratitude to my supervisors Dr. Mohamed Ahmed Youssef Abdalla and Prof. Ahmed Nader Mohieldin for their technical help. In addition, I am very grateful to Dr. Ahmed Ibrahim Khalil for giving me the opportunity to fabricate my work, for Eng. Ahmed Aboulseoud for measuring this work and for all the RF team at Analog Devices.

Table of Contents

ועו	isciaii	1161			1
A	cknov	vledgen	nents		ii
Ta	ible of	f Conte	nts		iii
Li	st of '	Fables			vi
Li	st of l	Figures			vii
Li	st of l	Publica	tions		xi
A l	bstrac	et			xii
1	INT	RODU	CTION		1
	1.1	Mobile	e Commun	nications from 1G to 5G	1
	1.2	Phased	d Arrays fo	or 5G Communication Systems	3
	1.3	Types	of Beamfo	orming	5
	1.4	5G Sy	stems		6
	1.5	Thesis	Organiza	tion:	8
2	LIT	ERATU	JRE SUR	VEY	9
	2.1	VGAs	in Literat	ure	9
		2.1.1 Digital Step Attenuators		tep Attenuators	10
			2.1.1.1	Pi Based Attenuators	10
			2.1.1.2	Tee Based Attenuators	12
			2.1.1.3	Phase Compensated Tee-model Attenuator	14
			2.1.1.4	Adavantages and Disadvantages of Passive Attenuators .	15
		2.1.2	Active V	GAs	17
			2.1.2.1	Variable gm Based Phase Compensated VGA	17
			2.1.2.2	Analog Controlled Current Steering VGA	18
			2.1.2.3	Current Steering Splitting Cascode VGA	20
			2.1.2.4	Digitally Controlled Current Steering VGA	23

	2.2	VCOs	s in Literature		
		2.2.1	Phase Noise in LC Cross-coupled Oscillators	26	
		2.2.2	Differential Cross-coupled NMOS LC VCOs	27	
			2.2.2.1 Phase Noise in LC Cross-coupled Oscillators	28	
			2.2.2.2 Advantages and Disadvantages of LC NMOS VCOs	29	
		2.2.3	Differential Cross-coupled CMOS LC VCOs	30	
			2.2.3.1 Advantages and Disadvantages of LC CMOS Cross-		
			coupled VCOs	30	
		2.2.4	Transformer Coupled VCO	31	
		2.2.5	A Noise-Shifting Differential Colpitts VCO	32	
			2.2.5.1 Advantages and disadvantages of the Noise-shifting Col-		
			pitts Oscillators	33	
3	PRO	POSE	D PHASE INVARIANT VGA ARCHITECTURES	35	
	3.1	Curren	nt Steering VGA	35	
		3.1.1	Gain Control	37	
			3.1.1.1 Layout Techniques For Gain Control:	38	
		3.1.2	Phase Compensation Techniques	40	
			3.1.2.1 Cascode Gate Resistance	40	
			3.1.2.2 Intermediate Inductor Lc	42	
		3.1.3	High Linearity and Efficiency Design	42	
		3.1.4	Input and Output Matching Networks	42	
		3.1.5	Measurements and Simulations	43	
	3.2	Variab	le Gain Amplifier With Cross-couple Switching Arrangements	51	
		3.2.1	Gain control And Phase In-variance	51	
			3.2.1.1 Merits Of Proposed Architecture	53	
		3.2.2	Simulation Results	53	
4	PRO)POSE	D CROSS-COUPLED LC TANK VCO	59	
	4.1	Circui	t Design	59	
		4.1.1		59	
		4.1.2	LC Tank	61	
		4.1.3	Cross-coupled Transistors	64	

		4.1.3.1 Optimum Current Density	64
		4.1.3.2 Optimum Sizing	55
		4.1.3.3 EM Simulations	67
	4.2	Measurements and Simulations	67
5	PRO	POSED TRANSMISSION LINE BASED VCO	73
	5.1	Transmission Line Theory	73
	5.2	Frequency Tuning Of The $\lambda/4$ Transmission line	74
	5.3	Circuit Design	76
		5.3.1 Tunable $\lambda/4$ Transmission Line:	77
		5.3.2 NMOS Cross-coupled Pair	78
	5.4	Simulations and Measurements	79
6	CON	NCLUSION AND FUTURE WORK	83
	6.1	Variable Gain Amplifiers	83
		6.1.1 Conclusion	33
		6.1.2 Future Work	83
	6.2	Voltage Controlled Oscillators	83
		6.2.1 Conclusion	83
		6.2.2 Future Work	34
Re	feren	ces	85

List of Tables

3.1	Comparison with state of art	58
4.1	Transistor biasing and sizing	66
4.2	Comparison with state of art	72
5.1	Transistor biasing and sizing for the TL VCO	79

List of Figures

1.1	Wireless mobile communications from 1G to 5G [3]	2
1.2	Applications of 5G communication networks [2]	3
1.3	BW and delay required for 5G applications and services [4]	3
1.4	More directive beam for phased arrays [2]	4
1.5	Block diagram for hybrid beamforming [5]	5
1.6	Block diagram of N-channel 5G system including both the beamformer	
	and UDC	6
2.1	Tree diagram showing the methods of gain control in literature	9
2.2	15dB gain range DSA with 1 dB attenuation step	10
2.3	Schematic of the pi model attenuator cell	11
2.4	Schematic of the pi cell at the reference state	11
2.5	Schematic of the pi cell at the attenuation state	12
2.6	Schematic of the tee model attenuator cell	12
2.7	Schematic of the tee cell at the reference state	13
2.8	Schematic of the tee cell at the attenuation state	13
2.9	Phase error of the 15dB pi or tee attenuator at both 28GHz and 40GHz	14
2.10	Schematic of the phase compensated Tee cell [7]	14
2.11	RMS phase error across the frequency [7]	15
2.12	RMS attenuation error across frequency [7]	15
2.13	IIP3 and IP1dB of the phase compensated DSA [7]	16
2.14	Schematic of gm based phase compensated VGA [8]	17
2.15	Phase error across V_{cntrl} for different values of Cx [8]	18
2.16	VGA gain across V_{cntrl} for different values of Cx [8]	18
2.17	Schematic of current steering VGA [9]	19
2.18	Relative phase across frequency for different gain states [9]	20
2.19	Schematic of current steering cascaded with splitting cascode VGA [10] .	21
2.20	Phase compensation technique in the current steering splitting cascode	
	VGA [10]	21
2.21	Maximum gain step for the current steering splitting cascode VGA [10]	22

2.22	RMS phase error for the current steering spinting cascode VGA across	
	frequency [10]	22
2.23	Gain at different control voltages for the current steering splitting cascode	
	VGA [10]	22
2.24	Schematic of digitally controlled current steering VGA [11]	23
2.25	Optimum inductor value for minimum phase variation [11]	24
2.26	(a) RMS gain error, (b) RMS phase error for the digitally controlled current	
	steering VGA [11]	24
2.27	Feedback view of the oscillator	25
2.28	Tree diagram for VCOs in literature	25
2.29	The impulse injection at both the peak and the zero crossing of the sinu-	
	soidal oscillator output [12]	26
2.30	LC NMOS cross-coupled differential VCO	28
2.31	LC CMOS cross-coupled differential VCO	30
2.32	Transformer coupled LC VCO [14]	31
2.33	The Zin of the tank circuit in transformer coupled VCO [14]	32
2.34	Phase noise of transformer coupled VCO [14]	32
2.35	Schematic of the single ended Colpitts VCO [15]	33
2.36	Schematic of the noise shifting Colpitts VCO [15]	34
2.37	Phase noise of the colpitts VCO [15]	34
3.1	(a) The schematic of the VGA with cross-couple caps to minimize phase	
	variation with gain steps, (b) The bias circuit for the main device and	
	cascode devices, (c) Block diagram of the binary to thermometer decoder	36
3.2	Simplified half circuit model for the VGA	38
3.3	Layout for the cascode and replica core for vertical device placement	39
3.4	Layout for the cascode and replica core for horizontal device placement .	39
3.5	Simplified model to show the Role of Rg in phase compensation	41
3.6	Effect of using Rg on the phase variation	41
3.7	Layout of the VGA input match	43
3.8	Layout of the VGA output match	43
3.9	Die photo for the VGA	45
3.10	Measured Vs Simulated VGA maximum gain across frequency	45