

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

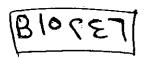
تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO


بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

Study of Plasma Endothelin-1 and Interleukin-8 in Neonates with Respiratory Distress Syndrome and in Infants and Children with Bronchial Asthma

THESIS

BY

Nageh Shehata Mohamed Ali M.B.B.Ch., and M.Sc.,

Submitted in partial fulfillment of MD Degree in Pediatrics

Supervisors

Prof. Dr. Salem Ahmed Sallam

Professor and Head of Pediatric Department Faculty of Medicine, El-Minya University

Prof. Dr. Zeinab Ahmed Ismail

Professor and Head of Clinical Pathology Department, Faculty of Medicine, El-Minya University

Dr. Nabil Gameel Mohamed

Assistant Professor of Pediatrics
Faculty of Medicine, El- Minya University

Dr. Sawsan Mahmoud El-Banna

Lecturer of Pediatrics
Faculty of Medicine, El- Minya University

FACULTY OF MEDICINE EL-MINYA UNIVERSITY 2001

وَمَا تَشَاءُونَ إِلَّا أَنْ يَشَاءَ اللَّهُ إِلَّا أَنْ يَشَاءَ اللَّهُ إِنَّ اللَّهَ كَانَ عَلِيمًا حَكِيمًا

رياله العظنية: العظنية:

سورة الإنسان آية (٣٠)

ACKNOWLEDGMENT

Praiseworthy thanks and all gratitude are due, first and in full measure, to merciful ALLAH, who gives and facilitates every thing.

It is of great pleasure to express my deep thanks and gratitude to *Prof. Dr. Salem Ahmed Sallam*, Professor and Head of Pediatric Department, Faculty of Medicine, El-Minya University, for his encouragement, support, and beneficial advice.

I would like to express my sincere gratitude to *Prof. Dr. Zeinab* Ahmed Ismail, Professor and Head of Clinical Pathology Department, Faculty of Medicine, El-Minya University, for her kind guidance, constructive criticism, and devotion of much of her time to this work.

All my thanks to *Dr. Nabil Gameel Mohamed*, Assistant Professor of Pediatrics, Faculty of Medicine, El-Minya University, for his indispensable advice, valuable instructions, close attention and friendly encouragement.

I am deeply grateful to *Dr. Sawsan Mahmoud El-Banna*, Lecturer of Pediatrics, Faculty of Medicine, El-Minya University, for her hard effort, helpful guidance, generous cooperation and kind advice.

My deep feelings and thanks to all members of Pediatric Department, El-Minya University Hospital, for their advice, help and support, and I would like to thank all members of Clinical Pathology Department, El-Minya University Hospital, for their help and advice.

Nageh Shehata

TO THE SPIRIT OF MY FATHER

He taught me all my principles.

TO MY MOTHER

Her love and support make all the difference.

TO MY WIFE

Her constant sacrifices made this work possible.

CONTENTS

	PAGE
INTRODUCTION AND AIM OF THE WORK	1-4
REVIEW OF LITERATURE	5-65
* Respiratory distress syndrome (RDS)	5
* Bronchial asthma	21
* Endothelin-1 (ET-1):	32
- ET-1 and neonatal RDS	38
- ET-1 and bronchial asthma	41
* Interleukins	49
- Interleukin-8 (IL-8)	55
- IL-8 and neonatal RDS	59
- IL-8 and bronchial asthma	63
PATIENTS AND METHODS	66 - 80
RESULTS	81- 116
DISCUSSION	117-137
SUMMARY AND CONCLUSION	138-142
RECOMMENDATIONS	143
REFERENCES	144 -180
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

A/a-ratio : Arteriolar/alveolar oxygenation ratio.

ANP : Atrial natriuretic peptide.

ARDS : Adult respiratory distress syndrome.

BAL : Broncho-alveolar lavage.

BALF : Broncho-alveolar lavage fluid.

BHR : Bronchial hyper-responsiveness.

BPD : Broncho-pulmonary dysplasia.

CBC : Complete blood count.

CF : Cystic fibrosis.

CLD: Chronic lung disease.

CPAP : Continuos positive airway pressure.

CS: Cesarean section.

DIC : Disseminated intravascular coagulation.

DNA : Deoxy ribonucleic acid.

ECE : Endothelin converting enzyme.

ECM : Extra-cellular matrix.

EDRF : Endothelin derived relaxing factor.

EDTA: Ethyelene diamene tetra-acetate.

ELISA : Enzyme linked immunosorbent assay.

ENAP : Endothelial neutrophil activating peptide.

ET-1 : Endothelin-1.

ETT : Endotracheal tube.

FDA: Food and drug administration.

FEV1 : Forced expiratory volume in one second.

Fio₂: Fraction of inspired oxygen.

FRC : Functional residual capacity.

fmol/ml : femtomol/ml.

LIST OF ABBREVIATIONS (CONTINUED)

G-CSF : Granulocyte-colony stimulating factor.

GM-CSF : Granulocyte macrophage-colony stimulating factor.

Gm: Gram.

Hb: Haemoglobin.

Hr : hour.

HMD : Hyaline membrane disease.

IDM : Infant of diabetic mother.

IFN- γ : Interferon-gamma.

IgA :Immunoglobulin A.

IL-8 :Interleukin-8.

IL-1b :Interleukin-1 beta.

IPPV : Intermittent positive pressure ventilation.

IVH : Intraventricular hemorrhage.

LBW : Low birth weight.

LPS : Lipopolysaccharid.

L/S : Lecithin/Sphingomyelin.

M-CSF: Macrophage-colony stimulating factor.

MD NCF : Monocyte derived neutrophil chemotactic factor.

NAP : Neutrophil activating peptide.

NCF : Neutrophil chemotactic factor.

NEIN: Neuroendocrine immunologic network.

NO : Nitric oxide.

O₂ : Oxygen.

PDA: Patent ductus arteriosus.

PEEP : Positive end expiratory pressure.

PEFR: Peak expiratory flow rate.

PG: Phosphatidyl glycerol.

LIST OF ABBREVIATIONS(CONTINUED)

Pgm : Picogram.

 PGE_2 : Prostaglandin E_2 .

Pmol/l: Picomol/litre.

PROM: Prolonged rupture of membranes.

PVL: Periventricular leukomalecia.

RBCs : Red blood cells.

RDS: Respiratory distress syndrome.

RNA: Ribonucleic acid.

RR : Respiratory rate.

 $TGF-\beta$: Transforming growth factor-beta.

 $TNF-\alpha$: Tumor necrosis factor-alpha.

TTN: Transient tachypnea of newborn.

 TxA_2 : Thromboxan A_2 .

Ul: Microlitre.

WBCs: White blood cells.

WK: Week.

LIST OF TABLES

TABLE	TITLE	PAGE
(I)	Factors affecting the incidence of RDS	6
(II)	Radiographic scoring of RDS	12
(III)	Stepwise approach to the management of asthma	30
	in children older than 5 years of age	
(IV)	Stepwise approach to the management of asthma	31
	in infants and children less than 6 years of age	
(V)	New orally active endothelin receptor antagonists	36
(VI)	Small cytokine family	56
(VII)	Clinical scoring for infants with RDS	67
(VIII)	Physical criteria for maturity	68
(IX)	Maturity rating	69
(X)	Classification of severity of acute asthma	72
	exacerbations	
(1)	Clinical characteristics of both preterm and full	89-90
	term neonates with RDS and normal controls	
(2)	Mode of delivery in both preterm and fullterm	91
	neonates with RDS	
(3)	Laboratory data of both preterm and fullterm	92
	neonates with RDS and normal controls	
(4)	Mean and standard deviation of parameters of	93
	arterial blood gases in both preterm and fullterm	
	neonates with RDS	
(5)	Statistical analysis of plasma ET-1 and IL-8	94
	levels in both preterm and fullterm neonates with	
	RDS and normal controls	:

LIST OF TABLES (CONTINUED)

TABLE	TITLE	PAGE
(6)	Correlation between plasma ET-1 level and	95
	clinical characteristics in both preterm and	
	fullterm neonates with RDS	
(7)	Correlation between plasma ET-1 level and	96
•	laboratory data in both preterm and fullterm	
	neonates with RDS	
(8)	Correlation between plasma IL-8 level and	97
	clinical characteristics in both preterm and	
	fullterm neonates with RDS	
(9)	Correlation between plasma IL-8 level and	98
	laboratory data in both preterm and fullterm	
	neonates with RDS	
(10)	Mean and standard deviation of plasma ET-1 and	99
	IL-8 levels in asphyxiated and non-asphyxiated	i
į	fullterm neonates with RDS	
(11)	Percentage distribution of survivors and non-	100
	survivors in both preterm and fullterm neonates	
	with RDS	
(12)	Mean and standard deviation of studied	101
	parameters in both preterm and fullterm neonates	
	with RDS as regards outcome	
(13)	Comparison between ET-1 and IL-8 sensitivity,	102
	specificity, positive predictive value and negative	
	predictive value in both preterm and fullterm	
	neonates with RDS	