سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Cairo University
Faculty of Agriculture
Department of Genetics

***** :

Development of Viruses Resistance in some Plants *via* Genetic Engineering Approaches

A Thesis

Submitted in Partial Fulfillment of Requirements for the Degree of Ph.D. of Science in Genetics

By

Gihan M. H. Hussein B.Sc. Agric. (Horticulture) 1989 M.Sc. Agric. (Vegetable Crops) Cairo Univ., 1996

Cairo University
Faculty of Agriculture
Department of Genetics

Development of Viruses Resistance in some Plants via Genetic Engineering Approaches

A Thesis
Submitted in Partial Fulfillment of
Requirements for the Degree of
Ph.D. of Science
in
Genetics

By Gihan M. H. Hussein B.Sc. Agric. (Horticulture) 1989 M.Sc. Agric. (Vegetable Crops) Cairo Univ., 1996

Supervisors

Prof. Dr. Ebtissam H.A. Hussein Head, Department of Genetics, Faculty of Agriculture, Cairo University

Dr. Atef S. Sadik
Associate Professor of
Agric. Virology, Dept. Agric.
Microbiol., Faculty of Agriculture,
Ain Shams University

Prof. Dr. Naglaa A. Abdallah
Professor of Genetics,
Faculty of Agriculture,
Cairo University

Dr. Bruno Gronenborn
Institut des Vegetales, Centre
National de la Recherche
Scientifique, France

APPROVAL SHEET

Development of Viruses Resistance in some Plants via Genetic Engineering **Approaches**

By Gihan M. H. Hussein

Approved

By

Prof. Dr. Taymour Nasr El-Din Deputy Director of Agricultural Genetic **Engineering Research Institute**

Prof. Dr. Sawsan Samy Youssef

Professor of Genetics, Faculty of Agriculture, Saulson. S. ... Jousse Cairo University

Prof. Dr. Ebtissam H.A. Hussein

Head, Department of Genetics

Faculty of Agriculture, Cairo University

Prof. Dr. Naglaa A. Abdallah

Professor of Genetics, Faculty of Agriculture, Nagla Abdellas Cairo University

Date: (\ / 6

Name of Candida te: Gihan Mohamed Hosny Hussein Degree: Ph.D

Title of Thesis: Development of viruses resistance in some plants via genetic engineering approaches

Supervisors: Prof. Dr. Ebtissam H.A. Hussein-Head, Department of Genetics-Faculty of Agriculture-Cairo University

Prof. Dr. Naglaa A. Abdallah- Professor of Genetics- Faculty of Agriculture- Cairo University

Dr. Atef S. Sadik-associate-Professor of Agric. Virology, Faculty of Agriculture- Ain Shams University

Dr. Bruno Gronenborn- Institut des Vegetales- Centre National de la Recherche Scientifique-France

Department: Genetics

Branch:

Approval: 11/6/2003

AB STRACT

Melon and watermelon are among the most important vegetable crops of the *Cucurbitaceae*. Members of this family are susceptible to different kinds of viral diseases. This investigation was attempting to establish an efficient regeneration system for melon and watermelon and to produce transgenic plants resistant to ZYMV and WmCSV. Melon regeneration system of the melon cultivar Shahd El-Dokki was improved by adding 5 mg/l AgNO₃ to shoot formation medium (MR medium). This enhanced the shoot regeneration frequency from 25% to 86%. A percentage of 75% of the regenerated shoots produced roots on MS medium containing 20 µg/l NAA.

An effective plant regeneration and a gene transfer systems via Agrobacterium tumefaciens were developed in watermelon local cultivars (Giza 1 and Giza 21) using cotyledons as explants. The shoot regeneration frequency was 49% and 47% for cvs. Giza 1 and Giza 21, respectively. The regenerated shoots were rooted on MS medium containing 40 μ g/l NAA.

A mutation by silencing the two possible initiator AUG codons was performed in ORF AC4 of WmCSV. The mutated Ac 1 gene with the modified ORF AC4 was subcloned in binary vector pBin19 creating pBin/WA-11.

Melon and watermelon cotyledons from 5-days-old seedlings were inoculated with Agrobacterium strain LBA4404 harboring one of the binary vectors pZYMV-Eg-cp, pBin/WA-12 or pBin/WA-11 containing ZYMV-cp, modified Ac1 or modified Ac1/ Ac4 genes. Selection on regeneration medium supplemented with 125 mg/l kanamycin, revealed a number of kanamycin-resistant plantlets.

Integration of the transgenes in the genome of putatively transgenic plants and expression of these genes was verified by PCR and western blot analysis. The PCR results revealed that the number of positive melon plants transformed with plasmids pZYMV-Eg-cp, pBin/WA-12 and pBin/WA-11, were 12, 11 and 2 plants, respectively. Moreover, PCR results of putatively watermelon plants showed that three and one plants in cv. Giza 1 and Giza 21, respectively were positive to ZYMV-cp gene. Whereas, 28 and only 2 plants were positive to the Rep gene in the watermelon plants transformed with pBin/WA-12 and pBin/WA-11, respectively. Western blotting analysis of the transgenic plants confirmed the expression of CP in the three PCR positive watermelon plants cv. Giza 1. Whereas, the tested 5 Rep-PCR positive melon plants showed the Rep gene expression. While, in the watermelon 48 plants exhibited a weak Rep expression. Subsequently, the resistance to WmCSV was detected using the agroinoculation assay on the T0 and T1 plants. A number of 29 watermelon plants out of 105 showed viral symptoms delay in the new shoots compared to the non-transformed plants.

Keywords: Agrobacterium-mediated transformation, organogenesis, Watermelon chlorotic stunt geminivirus (WmCSV), Zucchini yellow mosaic potyvirus (ZYMV), Agroinoculation, melon and watermelon

Ethan Souss

Acknowledgements

I would like to express my gratitude to

Prof. Dr. Ebtissam H.A. Hussein, Head of Genetics Department, Faculty of Agriculture, Cairo University, for her supervision and her continuous encouragement, keen interest and honest and endless help during this work and writing the thesis.

Prof. Dr. Naglaa Abdallah, Professor of Genetics, Faculty of Agriculture, Cairo University, for her critical helps, valuable advice and continuous encouragement during this work and writing the thesis.

Dr. Atef Shokry, Associate Professor of Virology, Faculty of Agriculture, Ain Shams University, for his efforts and endless helps during this study.

Prof. Dr. Bruno Gronenborn, Institut des Sciences Vegetales, for giving me the chance to work some of the experiments in his lab during the channel system mission, his efforts and sincere guidance. Also, all the members of his lab, for their support, helps during the period I was in France especially Dr. Ahmed Kheyr-Pour.

Prof. Dr. Magdy Madkour, Director of the Agriculture Research Center, for his continuous support and giving the opportunity to benefit from the channel system mission.

Prof. Dr. Hanaiya A. El-Itriby, Director General of Agricultural Genetic Engineering Research Institute, for providing all the facilities, encouragement and advices.

The members of the GTL lab, for their help and also, Mr. Khaled Hashem, at MPVL Agricultural Genetic Engineering research Institute, for his endless helps.

Table of Contents

Introduction	1
Review of Literature	
1. Potyviruses	5
Zucchini yellow mosaic virus	6
2. Geminiviruses	7
Watermelon chlorotic stunt geminivirus	8
3. Genetic engineering of virus resistance in plants	9
3.1. Plant resistance to RNA viruses	10
Viral cp-mediated resistance	12
3.2. Plant resistance to DNA viruses	. 14
Dominant negative strategy	15
4. Plant regeneration	17
4.1. Melon regeneration	18
4.2. Watermelon regeneration	21
5. Plant transformation	24
Agrobacterium-mediated gene transfer system	24
5.1. Melon transformation	25
5.3. Watermelon transformation	28
Materials and Methods	30
1. Materials	30
1.1. Plant materials	30
1.2. Tissue culture chemicals	30
1.3. Plasmids	30
1.4. Bacterial strain	31
1.5. Primers	32
1.5.1. Primers used for Ac 4 mutagenesis and sequencing	32
1.5.2. Primers used for screening putative	32
transgenic plants and Agrobacterium	
1.6. Antisera	38
2. Methods	38
2.1. Regeneration system of melon and watermelon <i>via</i> organogenesis	38
2.1.1. Melon	38
2.1.1.1. Seed sterilization, germination and explants	39
preparation	
2.1.1.2. Shoot formation	39
2.1.1.3. Shoot elongation	39
2.1.1.4. Root formation	39

2.1.1.4. Root formation	39
2.1.1.5. Acclimatization	40
2.1.2. Watermelon	40
2.1.2.1. Seed sterilization, germination and	40
explants preparation	•
2.1.2.2. Shoot formation	40
2.1.2.3. Rooting stage	41
2.1.2.4. Acclimatization	41
2.2. Transformation	43
2.2.1. Construct preparation	43
2.2.1.1. Mutagenesis of ORF AC4 of WmCSV-Sd strain	43
2.2.1.2. Cloning of the modified Rep expression	44
cassette into E. coil	
2.2.1.3. Plasmid DNA isolation	44
2.2.1.4. Confirmation of mutant clones	45
2.2.1.4.1. Pst I digestion	45
2.2.1.4.2. DNA sequencing and analysis	46
2.2.1.4.3. Sequence comparison	46
2.2.1.5. Construction of mutant Rep expression	47
cassette with the modified ORF AC4 into	
pBin19 and cloning	
2.2.1.5.1. Plasmid digestion with <i>Hind</i> III	47
2.2.1.5.2. Bgl I digestion of plasmid pWA-11	47
2.2.1.5.3. Ligation reaction	48
2.2.1.5.4. Transformation of <i>E. coli</i>	48
2.2.1.6. DNA electrophorasis	48
2.3. Agrobacterium-transformation with pBin/WA-11	49
2.3.1. Evaluation of transformed Agrobacterium	49
2.3.1.1. Via antibiotic resistance assay	49
2.3.1.2. <i>Via</i> PCR	51
2.3.1.2.1. Template preparation	51
2.3.1.2.2. PCR amplification	51
2.4. Transformation of melon and watermelon	51
2.4.1. Agrobacterium culture preparation	51
2.4.2. Melon transformation	52
2.4.3. Watermelon transformation	52
2.4.3.1. Establishment or a transformation system	52
2.4.3.1.1. Kananmycin sensitivity of watermelon	52
2.4.3.1.2. Watermelon transformation using plasmid pBI121	53
2.4.3.2. Watermelon transformation using plasmids	53
pZYMV-Eg-cp, pBin/WA-12 and pBin/WA-111	
2.5. Evaluation of transgenic plants	. 54
2.5.1. Histochemical GUS assay	54
रक्र १ ९०	

2.5.2. Molecular assay	55
2.5.2.1. Plant DNA isolation	55
2.5.2.2. Polymerase chain reaction (PCR)	55
2.5.3. Serological analysis	56
2.5.3.1. Western blot analysis	56
2.5.3.1.1. Plant proteins extraction	56
2.5.3.1.2. SDS- PAGE of extracted proteins	57
2.5.3.1.3. Protein blotting	57
2.5.3.1.4. Treatment with TYLCV-Rep antibody	58
2.5.4. Agroinoculation assay	59
2.6. Evaluation of WmCSV-Rep gene expression in transgenic	59
plants N. bentahmiana.	
2.6.1. Sterilization of transgenic N. benthamiana	60
2.6.2. Seed germination and selection medium	60
2.6.3. Statistical analysis	60
	<i>(</i> 1
Appendices	61
Results and Discussion	63
1. Regeneration <i>via</i> organogenesis	64
1.1. Melon regeneration	64
1.1.1. Shoot formation stage	64
1.1.2. Shoot elongation stage	68
1.1.3. Rooting stage	68
1.2. Watermelon regeneration	71
1.2.1. Shoot regeneration stage	71
1.2.1.1. Effect of AgNO ₃ on watermelon shoot formation	75
1.2.2. Rooting stage	77
1.2.3. Acclimatization	79
2. Transformation	82
2.1. Optimization of plant transformation conditions	82
2.1.1 Kanamycin sensitivity of watermelon	83
2.1.2. Watermelon transformation using pBI121	86
2.2. Construct preparation	91
2.2.1. Mutagenesis of ORF of WmCSV-Sd strain	91
2.2.2. Confirmation of mutant clones	93
2.2.2.1. Pst I digestion	93
2.2.2.2. DNA sequencing and comprising	95
2.2.3. Introduction of Rep expression cassette with the	95
modified ORF AC4 into the binary vector pBin19	
2.2.3.1. Plasmid digestion	95
2.2.3.2. Ligation	99
2.3 Agrobacterium transformation by pBin/WA-11	99

-.

	2.4. Plant transformation	102
	2.4.1. Melon	102
	2.4.1.1. Melon transformation with ZYMV-Eg-cp gene	102
	2.4.1.2. Melon transformation with Rep expression cassette of WmCSV-Sd	104
	2.4.2. Watermelon	112
	2.4.2.1. Watermelon transformation to produce ZYMV resistant plants	112
	2.4.2.2. Watermelon transformation to produce WmCSV resistant plants	113
	3. Evaluation of transgenic plants	122
	3.1. PCR detection	122
	3.2. Western blot immuonoassay	131
,	3.3. Agroinoculation assay	138
	4. Evaluation WmCSV- <i>Rep</i> gene in transgenic <i>N. benthamiana</i> plants	140
	4.1. N. benthamiana seed germination on selection medium	140
	4.2. Western blot immuonoassay for the putatively transgenic <i>N. benthamiana</i> plants	140
Sum	mary	145
	References	151

.

. .

.

List of Tables

Table (1): Oligonucletide primers used for ORF AC4 mutagensis and sequencing	37
Table (2): Primers used for screening putative transgenic plants and Agrobacterium	37
Table (3): Media used for shoot formation in watermelon	42
Table (4): Total number of explants, number and percentage of Shahd El-Dokki melon explants forming shoots on media I (without silver nitrate), 5 MR (MR+ 5 mg/l AgNO ₃) and 1 (MR + 10 mg/l AgNO ₃).	
Table (5): Effect of the different media composition on root Formation in melon shoots	69
Table (6): Effect of different media on watermelon cvs. Giza 1 and Giza 21 regeneration using cotyledon explants	72
Table (7): Effect of silver nitrate on watermelon shoot regeneration from cotyledon explants cvs. Giza 1 and Giza 21 via organogenesis	76
Table (8): Effect of NAA concentrations on the frequency of watermelon shoots cvs. Giza 1 and Giza 21 forming roots	78
Table (9): Kanamycin sensitivity of watermelon cultivars (Giza 1 and Giza 21) using 100 explants for each concent	85 cration
Table (10): Effect of incubation time on the number of GUS expression of cotyledon watermelon explants cvs. Giza 1 and Giza 21	87
Table (11): Effect of incubation time on transformation frequency of watermelon cotyledon explants <i>cvs</i> . Giza 1 and Giza on selection medium	90 21
Table (12): Transformation frequency of melon explants using three different plasmids	103