

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Study of some sharks and rays in the Mokattamian (middle and late Eocene) of Egypt

A thesis

Submitted in Partial Fulfillment of The Requirements for The Degree of
Master of Science in Geology

By

Iman Abd ElHamid Mohammed Ali Salama

B.Sc. (Hons.) in Geology 2012, Ain Shams University

Supervised by

Prof. Dr. Amin Marco Strougo

Professor Emeritus of Stratigraphy and Macropaleontology, Geology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Dr. Anhar Asan Abed El-Ghany

Lecturer of Macropaleontology, Geology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.

Department of Geology Faculty of Science Ain Shams University 2020

Faculty of Science Department of Geology

Approval Sheet

Study of some sharks and rays in the Mokattamian (middle and late Eocene) of Egypt

By

Iman Abd ElHamid Mohammed Ali Salama

A Thesis Submitted

in Partial Fulfillment of The Requirements for The Degree of Master of Science in Geology

<u>Supervisors</u>	<u>Approved</u>
Prof. Dr. Amin Marco Strougo	
Professor Emeritus of Stratigraphy	and
Macropaleontology Geology Department, Fac	culty of
Science, Ain Shams University.	
Dr. Anhar Asan Abed El-Ghany	
Lecturer of Macropaleontology	
Geology Department, Faculty of Science, Ain	Shams
University.	

Chairman of Geology Department

Dr. Karim W. Abdelmalik

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Degree of Master of Science in Geology, Besides the research work materialized in this thesis, the candidate attended eleven post-graduate courses for one academic year in the following topics:

- 1. Advanced Biostratigraphy
- 2. Advanced Lithostratigraphy
- 3. Advanced Structural Geology
- 4. English Language
- 5. Field Geology
- 6. Geostatistics
- 7. Geotectonics
- 8. Micropaleontology
- 9. Paleoecology
- 10. Sedimentary Petrology
- 11. Sedimentation

In addition, the author passed the final exams of these courses held in September 2014.

Chairman of Geology Department
Dr. Karim W. Abdelmalik

Faculty of Science Department of Geology

Name: Iman Abd ElHamid Mohammed Ali Salama

Degree: Master of Science

Department: Geology

Faculty: Science

<u>University</u>: Ain Shams

Graduation Year: 2012

Year of Grant: 2020

ACKNOWLEDGMENT

First of all, I would like to express my deep appreciation to my supervisors Prof. Amin Strougo and Dr. Anhar Asan, Ain Shams University, Faculty of Science, Department of Geology, for the continuous motivations and their patience throughout the study; this thesis could not be completed without their guidance, support and priceless knowledge. I am very grateful to Prof. A. Strougo for allowing me to study his rich and valuable collection.

In addition, I am thankful for Dr. Abdel Monem M. Soltan, Ain Shams University, Faculty of Science, Department of Geology, and Dr. Samah ElNahas, General Petroleum Company, for providing all the researches necessary for this study. Also, I am grateful for my colleagues who encouraged and supported me throughout this study.

Last but not least, to my lovely family and friends, I am extremely thankful for their continuous support, inspiration and love that give me the motivation and hope for moving forward throughout my life.

ABSTRACT

The main target of this thesis is to identify, describe, systematically study, and illustrate the elasmobranchs (sharks and batoids) of the Mokattamian (middle and late Eocene) Stage of Egypt. The source of the studied material is the rich and diverse collection of Professor Amin Strougo, housed in the Geology Department of the University of Ain Shams. Up to this day, the Egyptian elasmobranchs remain very poorly documented throughout the Phanerozoic.

In an attempt to reduce the gap in our knowledge, the following steps have been achieved in the present study:

- 1) Identification of species based, whenever possible, on a large number of fossil teeth.
- 2) Updating the specific and generic allocation of the various taxa that have been identified.
- 3) Construction of a chart showing the stratigraphic distribution of the studied taxa in the various levels of the Mokattamian.
- 4) Attempt to deduce the past environments of the studied time interval by examining the present distribution and ecological requirements of the extant genera represented in our material.

The main results arrived at in the present study can be summarized in the following points.

1) Thirty-two species belonging to twenty-five genera and fourteen families (twenty species of selachians belong to sixteen genera and twelve species of

batoids belong to nine genera) have been identified, illustrated, and fully discussed.

- 2) A more "biological" approach of some species has been realized, based on the study of a large number of specimens collected from various stratigraphic levels and different localities, and by taking into consideration difference in tooth morphology that may be due to different positions on the jaws, to sexual dimorphism, etc. The study of the teeth of extant genera and species has been very enlightening in this approach.
- 3) All the species in the studied collection contain a full set of information concerning the locality from which they came, the formation from which they were collected, and their precise stratigraphic level within the different intervals of the Mokattamian Stage (MK1-MK12) following the latest scheme proposed by Strougo (2008). As a result, several species appear to be characteristic of specific horizons and, hence, could be used in the future in regional biostratigraphic correlation.
- 4) The average size of *Misrichthys stromeri* Case & Cappetta, 1990 seems to be age dependent, younger populations generally being larger in size. If this trend is confirmed by future studies, it may be used to separate specifically older populations from younger ones.
- 5) The species *Ginglymostoma angolense* Dartevelle & Casier, 1943 is reported for the first time in the Egyptian Eocene, and from the middle Eocene of Qatar (see below point #6).
- 6) The species "Carcharias" koerti (Stromer, 1910), Moerigaleus vitreodon Underwood &Ward, 2011, Physogaleus aff. tertius (Winkler, 1874), and Rhizoprionodon sp. are reported for the first time from the middle Eocene of Qatar (based on material in Strougo's collection coming from this country).

7) A new species has been identified in the middle Eocene (possibly level MK3) of ElGedida iron mine, in the Bahariya Oasis. It has been recently published (Salame & Asan, 2019) under the name of *Odontorhytis bahariensis* and reincorporated in this study.

CONTENTS

	Page
Abstract	I
List of tables	VII
List of figures	X
Chapter 1: Material and method	1
Chapter 2: The Mokattamian Stage in Egypt	5
2.1. Division of the Mokattamian Stage	6
2.2. Position of the Mokattamian Stage in the Global Standard	
Stratigraphic Scale	12
Chapter 3: Stratigraphic framework	15
3.1. Greater Cairo	16
3.2. The Fayum	21
3.3. Bahariya Oasis	24
3.4. Miscellaneous Egyptian localities	27
3.5. Qatar	28
Chapter 4: General morphology of elasmobranchs	31
4.1. General features	31
4.2. Dentition	
Chapter 5: Biogeography of living elasmobranchs	47
7.1. Genus <i>Ginglymostoma</i> Müller & Henle, 1837	48
7.2. Genus Nebrius Rüppell, 1837	49
7.3. Genus Carcharias Rafinesque, 1810	50
7.4. Genus Alopias Rafinesque, 1810	51
7.5. Genus Hemipristis Agassiz, 1843	52
7.6. Genus Carcharhinus Blainville, 1816	54
7.7. Genus Galeocerdo Müller & Henle, 1838	54

7.8. Genus <i>Rhizoprionodon</i> Whitley, 1929	55
7.9. Genus <i>Rhinobatos</i> Linck, 1790	
7.10. Genus Anoxypristis White & Moy-Thomas, 1941	58
7.11. Genus <i>Pristis</i> Linck, 1790	
7.12. Genus <i>Myliobatis</i> Cuvier, 1816	60
Chapter 6: Systematic paleontology	61
6.1. Previous work	61
6.2. Systematic paleontology	68
Ginglymostoma angolense Dartevelle & Casier, 1943	69
Nebrius blanckenhorni (Stromer, 1903)	71
"Carcharias" koerti (Stromer, 1910)	73
Carcharocles cf. sokolowi (Jaekel, 1895)	75
Macrorhizodus praecursor (Leriche, 1905)	78
Cretolamna twiggsensis (Case, 1981)	81
Alopias alabamensis White, 1956	85
Hemipristis curvatus Dames, 1883	88
Moerigaleus vitreodon Underwood & Ward, 2011	
Abdounia aff. minutissima (Winkler, 1874)	
Carcharhinus frequens (Dames, 1883)	95
Carcharhinus sp.1 Case & Cappetta, 1990	97
Carcharhinus sp.2 Case & Cappetta, 1990	100
Galeocerdo eaglesomei White, 1955	102
Galeocerdo latidens Agassiz, 1843	106
Misrichthys stromeri Case & Cappetta, 1990	107
Physogaleus aff. tertius (Winkler, 1874)	110
Rhizoprionodon sp	112
Odontorhytis pappenheimi Böhm, 1926	115
Odontorhytis bahariensis Salame & Asan, 2019	116
Rhinobatos sp. Adnet et al., 2011	119
Anoxypristis mucrodens (White, 1926)	
Pristis lathami Galeotti, 1837	
Propristis schweinfurthi Dames, 1883	
Coupatezia sp. Strougo et al., 2007	
«Coupatezia» sp. Strougo et al., 2007	
Myliohatis of latidens Woodward 1888	130