

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

MONTE CARLO SIMULATION AND 3D FINITE ELEMENT ANALYSIS OF THE FEMALE GENITAL ORGANS FOR THE EARLY DETECTION OF CERVICAL CANCER

By

Samar Mohamed Abd El-Fattah Kamel

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and Systems

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

MONTE CARLO SIMULATION AND 3D FINITE ELEMENT ANALYSIS OF THE FEMALE GENITAL ORGANS FOR THE EARLY DETECTION OF CERVICAL CANCER

By Samar Mohamed Abd El-Fattah Kamel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Biomedical Engineering and Systems

Under the Supervision of

Associate Professor
Systems and Biomedical Engineering
Faculty of Engineering, Cairo University

Pr. Sherif H. El-Gohary

Assistant Professor
Systems and Biomedical Engineering
Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

MONTE CARLO SIMULATION AND 3D FINITE ELEMENT ANALYSIS OF THE FEMALE GENITAL ORGANS FOR THE EARLY DETECTION OF CERVICAL CANCER

By Samar Mohamed Abd El-Fattah Kamel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in

Biomedical Engineering and Systems

Approved by the Examining Committee	
Prof. Dr. Noha S. Hassan,	Thesis Main Advisor
Prof. Dr. Ahmed H. Kandil,	Internal Examiner
Prof. Dr. Walid Al-Atabany, - Helwan University	- External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Samar Mohamed Abd El-Fattah Kamel

Date of Birth: 14/9/1991 **Nationality:** Egyptian

E-mail: sabdelfattah.k@gmail.com

Phone: 01116072247

Address: 20 Khaled Amin Street, Haram, Giza

Registration Date: 1/3/2014 **Awarding Date:**/2021 **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Prof. Dr. Noha S. Hassan Dr. Sherif H. El-Gohary

Examiners:

Prof. Dr. Walid Al-Atabany (External examiner)

- Helwan University

Prof. Dr. Ahmed H. Kandil (Internal examiner) Prof. Dr. Noha S. Hassan (Thesis main advisor)

Title of Thesis:

Monte Carlo simulation and 3D finite element analysis of the female genital organs for the early detection of cervical cancer.

Key Words:

Cervical Cancer; Monte Carlo; Finite Element Method; Female Genital Organs; Photoacoustic Imaging.

Summary:

We present a complete photoacoustic (PA) analysis for the early detection of cervical cancer using 3D realistic anatomical MRI models of the female genital organs. Models represent a normal healthy cervix and two abnormal cases; early and advanced stages of cancer. Nine constructed 3D models representing FIGO cervical cancer staging were also simulated in this study. Monte Carlo simulations is used to compute fluence maps for the different models at $\lambda = 633$ nm. Thermal, structural and acoustical analyses are performed using the FEM. Results showed that there is a significant change in the detected PA signals for abnormal cervix tissues (containing a tumor) as compared to healthy cervix tissues when the transducer was placed trans-vaginally which proves that we are able to differentiate between cancer stages. Thus, results provide insights into using PA imaging for the detection of cancers at early stages.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Samar Mohamed Abd El-Fattah Kamel	Date:
Signature:	

Dedication

I would like to dedicate this work to every single person who encouraged me once to continue and keep up the good work, to those persons who believed in me, to whom their gentle and kind words were a source of power...

Thank you for your help, encouragement and support.

Samar Mohamed

Acknowledgments

Before and above all, I would like to express my gratitude to **ALLAH**; **The Absolute Ruler** for paving the way for me to complete this work. The supportive, protective ruler and the governor of all things that without his will, I would not achieve anything.

I consider myself lucky to have worked under the supervision of **Prof. Dr. Noha S. Hassan**. I am greatly thankful for her valuable guidance, precious advice, and sincere encouragement. Words will never be able to express my deepest gratitude.

I owe a lot of thanks to **Dr. sherif H. El-Gohary** for his instructional supervision, continuous support, and patience. His guidance helped and directed me through each stage of the thesis.

I feel most indebted to **Eng. Mohamed Hassan** for his help and support.

I would like to thank each of the following people who greatly helped me on different manners:

- o **Dr. Mohamed Mohsen** the radiologist who taught me how to read and understand medical scans.
- o **Dr. Moataz El-Sherbiny** the gynecologist who explained to me the anatomy and histology of the female's genitals.
- o **Tec. Hamed Hassan** the technician who helped me all the time with any questions regarding the scans and the work performed on them.

I would like to thank the National Cancer Institute and their supportive staff.

I am grateful for the Biomedical Engineering Department and the Rehabilitation and Bionics Lab at Cairo University for allowing me full access to the software programs used to carry out this work.

Finally, I am very grateful for my **Mother** who always encouraged me to complete what I had started to its end and her prayers for me. Great thanks to my **Brothers** who supported me all time during this journey, helped me with things they didn't know before and for them believing in me. I am also very thankful for my **Friends** who always were keeping me up with their kind heart and encouragement words.

Many thanks and Appreciation to all for being part of this journey. This thesis became possible with all of you.

Table of Contents

DISCLAIMER	R	I
DEDICATION	T	II
ACKNOWLEI	DGMENTS	III
TABLE OF CO	ONTENTS	IV
LIST OF TAB	LES	VIII
LIST OF FIGU	URES	IX
NOMENCLAT	ΓURE	XVIII
	INTRODUCTION	
1.1.	CLINICAL PROBLEM: CERVICAL CANCER	1
Cervical Car	ncer in Egypt	5
1.2.	OBJECTIVE	6
1.3.	THESIS STRUCTURE	7
1.4.	THESIS PUBLICATION	7
CHAPTER 2:	MEDICAL BACKGROUND AND PHOTOACOUSTIC	
DIAGNOSTIC	TECHNIQUE	8
2.1.	Female Genital Organs The Uterine Cervix; Ana	TOMY AND
HISTOLOGY	8	
2.2.	TERMS, PRECANCEROUS CONDITIONS AND CANCEROUS TU	MORS11
2.2.1.	Terms for Abnormal Cell Growth	11
2.2.2.	Precancerous Conditions	12
2.2.2.1.	Abnormal Squamous Cells	
2.2.2.2.	Abnormal Glandular Cells	
2.2.3.	Cancerous Tumors	
2.3.	ETIOLOGY AND SYMPTOMS OF CERVICAL CANCER (CC)	17
2.3.1.	Etiology of CC	17
2.3.2.	Symptoms	17
2.4.	CERVICAL CANCER STAGING	18
2.5.	CURRENT STANDARDS FOR DIAGNOSIS	25
2.5.1.	Cytological tools; PAP Smear	25
2.5.2.	Molecular Biology; HPV Test	26
2.5.3.	Visual inspection; Colposcopy	27
2.5.4.	Qualitative tools	28
2.5.4.1.	Cervicography	28
2.5.4.2.	Speculoscopy	28
2.5.5.	QUANTITATIVE TOOLS	28
2.5.5.1.	Digital Image Colposcopy	
2.5.5.2.	Florescence Spectroscopy	29

2.5.5.3.	Optical Coherence Tomography (OCT)	29
2.6.	CONVENTIONAL IMAGING MODALITIES	29
2.7.	PROMISING PHOTOACOUSTIC IMAGING TECHNIQUE	30
CHAPTER 3: 31	D REALISTIC MODEL CONSTRUCTION	34
3.1.	MRI SCANS	34
3.2.	FEMALE GENITAL ORGANS MODELS GENERATION	35
3.2.1.	Image Stacking	37
3.2.2.	Image Segmentation	39
3.2.2.1.	Region of Interest (ROI)	
3.2.2.2.	Segmentation	
3.2.3.	Image 3D Rendering	
3.2.3.1. 3.2.3.2.	Surface Rendering Volume Rendering	
3.3.	FEMALE GENITAL ORGANS CONSTRUCTED MODELS	
3.3.1.	Normal Model - Case without Cervical Abnormalities	
3.3.2.	FIGO Stages Models	
3.3.3.	Abnormal Real Model – Case with Late Stage Cervical Cancer	
3.3.4.	Abnormal Real Model – Case with Too Late Stage Cervical Cance	
3.3.5.	Abnormal Real Model – Case After Radiotherapy	
CHADTED 4. I	IGHT SIMULATIONS USING MONTE CARLO ALGORIT	CTTN/I
	CARLU ALGURII	
4.1.	INTRODUCTION	
4.2.	MONTE CARLO (MC) SIMULATIONS FOR LIGHT PROPAGATION	
4.3.	MOLECULAR OPTICAL SIMULATION ENVIRONMENT (MOSE)	
4.4.	LIGHT SIMULATIONS	55
4.5.	GENERATION OF FLUENCE MAPS FOR DIFFERENT CONSTRUCTE	ED 3D
FEMALE GENIT	AL MODELS	55
4.6.	FLUENCE DISTRIBUTION MAP FOR REALISTIC CASE REPRESEN	NTING
Normal Modi	EL	56
4.7.	FLUENCE DISTRIBUTION MAP FOR DIFFERENT FIGO STAGES	58
4.8.	FLUENCE DISTRIBUTION MAPS FOR REALISTIC CASE REPRESEN	NTING
AN IIB STAGE	73	
4.9.	FLUENCE DISTRIBUTION MAPS FOR REALISTIC CASE REPRESEN	NTING
AN IB1 STAGE		
4.10.	EFFECT OF ROI ON TOTAL LIGHT ABSORPTION	77
4.11.	STUDY EFFECT OF PENETRATION DEPTH	
CHAPIER 5: F	INITE ELEMENT METHOD AND THERMAL ANALYSIS	81
5.1.	Introduction	
5.2.	FINITE ELEMENT METHOD (FEM)	81
5.2.1.	Finite Element Method Theoretical basis	
5.2.2.	Finite Element Method Applications	
5.2.3.	Finite Element Method Pros and Cons	82
5.2.3.1.	FEM Pros	82

5.2.3.2.	FEM Cons	83
5.2.4.	Finite Element Method Phases	83
5.3.	FINITE ELEMENT METHOD FOR THERMAL SIMULATIONS	84
5.3.1.	Geometry	
5.3.1.1.	Models Conversion from Surface to Solid	
5.3.1.2.	Creating Geometry in ANSYS	
5.3.2.	Transient Thermal Analysis	
5.3.2.1.	Engineering Data; Define Materials' Properties	
5.3.2.2.	Mesh Generation	
5.3.2.3.	Define Initial & Boundary Conditions	
5.4.	THERMAL ANALYSIS RESULTS	
5.4.1.	Realistic Case Representing the Thermal Changes in Normal	
5.4.2.	Cases Representing the Thermal Changes in FIGO Stages	
5.4.3.	Thermal changes in 3D Realistic Models of Diseased Cases	103
CHAPTER 6: I	PHOTOACOUSTIC SIMULATION	106
6.1.	FINITE ELEMENT METHOD FOR STRUCTURAL &	ACOUSTIC
SIMULATIONS	106	
6.1.1.	Transient Structural Analysis	106
6.1.2.	Acoustic Analysis	107
6.2.	THERMAL EXPANSION RESULTS	108
6.2.1.	Realistic Case Representing the Deformation Changes for No	ormal
Model	108	
6.2.2.	Cases Representing the Deformation Changes for FIGO Stag	ges 109
6.2.3.	Deformation Changes in 3D Realistic Model of Diseased case	se114
6.3.	VALIDATION MODEL FOR ACOUSTICAL SIMULATION	118
6.4.	ACOUSTIC ANALYSIS OF FIGO STAGING MODELS (LIGH	IT SOURCE
PLACED THRO	UGH THE VAGINA)	123
6.5.	ACOUSTIC ANALYSIS OF FIGO STAGING MODELS (LIGH	IT SOURCE
PLACED THROU	UGH THE RECTUM)	125
6.6.	ACOUSTIC ANALYSIS OF DISEASED REALISTIC CASE MOD	DEL (LIGHT
SOURCE PLACE	ED THROUGH THE VAGINA AND RECTUM)	`
6.7.	Young's Modulus Effect Study	
	DISCUSSION	
7.1.	FLUENCE MAPS GENERATED FROM CONSTRUCTED MODELS	
7.2.	THERMAL AND STRUCTURAL CHANGES	
7.3.	ACOUSTICAL SIGNALS	132
CHAPTER 8: (CONCLUSION AND FUTURE WORK	133
8.1.	CONCLUSION	133
8.2.	Future Work	
REFERENCES	J	135
	MATLAB WORK FOR READING FLUENCE MAPS	
	INTRODUCTION	1/15

2.	FLUENCE	MAPS FC	OR NORMAL	CERVIX	AND	EARLY	FIGO	STAGES
(LIGHT SOURCE	E PLACED TI	HROUGH \	AGINA)					145
3.	FLUENCE	MAPS FO	R NORMAL	CERVIX	AND	EARLY	FIGO	STAGES
(LIGHT SOURCE	E PLACED TI	HROUGH F	RECTUM)					147
4.	FLUENCE	MAPS FO	OR REALIST	IC CASE	REPR	RESENTIN	NG IB1	STAGE
(LIGHT SOURCE	E PLACED TI	HROUGH T	HE VAGINA	AND REC	TUM).			148

List of Tables

Table 2.1: Cervical Cancer Staging according to FIGO 2018
Table 4.1: Optical properties; Absorption (Ua), Scattering (Us), Anisotropy (g) and Refractive index (n) of cervix and surrounding organs at wavelength (λ) of 633 nm. Ua and Us are in units of mm ⁻¹
Table 4.2: Total Fluence in normal model for cervix and each of surrounding organs at different penetration depths from the beginning of light source placed through vagina
Table 5.1: Thermal properties of female genitals and surrounding organs [106 - 108]
Table 6.1. Mechanical and Acoustic properties for biological tissues of female genitals and surrounding organs [106], [108], [109]. Deformation contour plot, Color Map, Maximum Deformation Curve in green and Average