

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A comparative study between the use of Resonance Tube Voice Therapy and Smith-Accent Voice Therapy in rehabilitation of hyperfunctional dysphonia

Thesis

Submitted for the Partial Fulfilment of the M.D. degree in Phoniatrics

Ву

Nashwa Mahmoud Mohamed Othman

Assistant Lecturer of Phoniatrics, ENT Department. Faculty of Medicine, Ain-Shams University

Supervised by

Prof. Dr. Mohammed Ali Saad Baraka

Professor of Phoniatrics, ENT Department Faculty of Medicine, Ain-Shams University

Prof. Dr. Nahla Abdel-Aziz Rifaie

Professor and head of Phoniatric Unit, ENT Department Faculty of Medicine, Ain-Shams University

Dr. Mariam Salah Shadi

Lecturer of Phoniatrics, ENT department Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain-Shams University Cairo, Egypt 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohammed Ali Saad Baraka**, Professor of Phoniatrics, Faculty of Medicine, Ain-Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Nahla Abdel-Aziz Rifaie**, Professor and head of Phoniatric unit, Faculty of Medicine, Ain-Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mariam Salah Shadi**, Lecturer of Phoniatrics, Faculty of Medicine, Ain-Shams University, for her great help, active participation and guidance.

No word could describe my acknowledgment, love and grate fullness to my family. Without their support in the critical moments and the never ending encouragement and help, this work could not be completed.

Nashwa Mahmoud Othman

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Introduction	1
Aim of the Work	17
Review of Literature	18
Patients and Methods	63
Results	83
Discussion	105
Summary	123
Conclusion	127
Recommendations	128
References	129
Appendices	153
Arabic Summary	—

List of Abbreviations

Abb.	Full term
AM	. Accent Method
	anterior to posterior
	. Auditory Perceptual Assessment
BRAT	. behavior readjustment technique
CONSORT	. Consolidated Standards of Reporting Trials
	. Coronavirus disease 2019
CQ	. Contact quotient
CT	. Computerized tomography
CT	. Cricothyroid
EGG	. Electroglottography
FVF	. False vocal fold
IL	. injection laryngoplasty
MADR	. Maximum area declination rate
MAPLs	. Minimal Associated Pathological Lesions
MFDR	. Maximum flow declination rate
MLS	. Micro-laryngeal surgery
MRI	. Magnetic resonance imaging
MTD	. Muscle tension dysphonia
OQ	. Open quotient
QOL	. Quality-of-life
RCT	. Randomized controlled trial
RTVT	. Resonance Tube voice therapy
SA	. Smith-Accent
SOVTE	. Semiocludded vocal tract exercises
SPL	. Sound pressure level
SPR	. singing power ratio
TA	. Thyroarytenoid

List of Abbreviations cont...

Abb.	Full term
TPA Tube	phonation with the distal end in air
UVFP Unilat	•
VDQOL Voice	disorder quality of life
VFE Vocal	function exercises
VHIVoice	Handicap Index
VLP Vertic	al laryngeal position
WRT Water	r resistance therapy

List of Tables

Table No	. Title	Page No.
Table (1):	Comparison between the 2 groups rage distribution of participants usin test	g Student T
Table (2):	Comparison between the 2 groups r sex distribution of participants using Test	egarding the Chi Square
Table (3):	Comparison between the two study regards the presence of dysphonia at on APA both Pre and Post treat Marginal Homogeneity test	and its grade Itment using
Table (4):	Comparison between the two stud- regards the quality of voice on APA I Post treatment using Marginal Homo	y groups as both Pre and
Table (5):	Comparison between the two study regards the pitch on APA both Programment using Marginal Homogon McNemar's and Fisher's exact tests.	re and Post geneity test,
Table (6):	Comparison between the two study regards the loudness on APA both for treatment using McNemar's Exact exact tests	Pre and Post
Table (7):	Comparison between the two study regards the improvement of Auditor Assessment (APA) parameters us exact or Chi square (X ²) tests	y Perceptual sing Fisher's
Table (8):	Comparison between the two study regards the presence of vocal fold its grade on laryngeal examination to Post treatment using Marginal Home and Fisher's exact test	redness and both Pre and ogeneity test

List of Tables cont...

Table No.	Title	Page No.
Table (9):	Comparison between the two study regards the presence of vocal fold educated on laryngeal examination be Post treatment using Marginal Home and Fisher's exact test	dema and its oth Pre and ogeneity test
Table (10):	Comparison between the two study regards the presence of phonatory width on laryngeal examination be Post treatment using Marginal Home and Fisher's exact test	gap and its oth Pre and ogeneity test
Table (11):	Comparison between the two study regards the presence of hyperadduction and its degree of examination both Pre and Post treat Marginal Homogeneity test and Fistest	ventricular n laryngeal tment using sher's exact
Table (12):	Comparison between the two study regards the improvement in large examination using Fisher's exact and (X²) tests	/ groups as yngeoscopic I Chi-square
Table (13):	Comparison between the Arabic Voic Index (VHI) in the two groups both F treatment using Student's t test and F	re and Post
Table (14):	Comparison between the functiona Arabic Voice Handicap Index (VHI) groups both Pre and Post treat Student's t test and Paired t test	I domain of in the two ment using
Table (15):	Comparison between the physical Arabic Voice Handicap Index (VHI) groups both Pre and Post treat Student's t test and Paired t test:	in the two ment using

List of Tables cont...

Table No.	Title	Page No.
Table (16):	Comparison between the emotional Arabic Voice Handicap Index (VH groups both Pre and Post treat Student's t test and Paired t test:	I) in the two atment using
Table (17):	Comparison between the two studies regards the fundamental frequency analysis of the patients' voice both treatment using Student's t test and	on acoustic Pre and Post
Table (18):	Comparison between the two studeregards the Jitter % on acoustic are patients' voice both Pre and Post treestudent's t test and Paired t test:	nalysis of the eatment using
Table (19):	Comparison between the two studies regards the Shimmer % on acousting the patients' voice both Pre and Peusing Student's t test and Paired t test.	ic analysis of ost treatment
Table (20):	Comparison between the two studies regards the Noise to Harmonic rationally analysis of the patients' voice both treatment using Student's t test and	o on acoustic Pre and Post
Table (21):	Comparison between the two studies regards the improvement in VHI analysis of the patients' voice Whitney test:	ly groups as and acoustic using Mann

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Demonstration of the Finnish Reso Tube Method, Abo Akademi Universit		25
Figure (2):	The submersion angles and water da resonance tube at a 45 ° angle to and a silicone tube resembling a Lattube at 200° angle to the right	the left ax Vox	24
Figure (3):	tube at 90 °angle to the right		
Figure (4):	Areas (mm²) measured in CT mid images after phonation sustained volinto a glass tube of 27 cm length and inner diameter:	sagittal wel [a:] d 9 mm	42
Figure (5):	Areas (mm²) measured in CT mid- images after phonation sustained vo- into a glass tube of 27 cm length and inner diameter:	wel [a:] d 9 mm	43
Figure (6):	Areas (mm²) measured from CT tran- images after phonation sustained vo- into a glass tube of 27 cm length and inner diameter:	sversal wel [a:]	44
Figure (7):	The assessment and treatment p patients received in this study		65
Figure (8):	The resonance glass tube with a number which the tube will be submersed be surface of the water.	low the	72
Figure (9):	The angle of the tube (in respect to the is kept around 45 degrees, to facilit correct posture in combination with the water depth constant with ensurgood labial seal so that no air would lead	e body) ate the keeping aring of	
Figure (10):	CONSORT 2010 Flow Diagram		

INTRODUCTION

Voice is the complex, dynamic product of vocal fold vibration that allows us to vocalize (i.e. make sound) and verbalize (i.e. produce language through speech) (*Justice*, 2006). The basic task of the voice is to act as a carrier wave of speech communication (*Vilkman*, 2000). Control of voice is an essential component in the individual's ability to adjust the social situation, to make good contact and maintain equilibrium in relation to the audience. It serves as the melody of speech and provides expression, feeling, intent and mood of the articulated thoughts (*Greene and Mathieson*, 1989).

Voice disorders are characterized by abnormalities in pitch, loudness, and/or quality of the voice that can limit the effectiveness of oral communication (Ramig and Verdolini, 1998; MacKenzie et al., 2001 and Simberg et al., 2006) and speaker's cannot fulfill the social and occupational requirements (Aronson, 1985; Stemple, et al., 1995 and Sataloff and Abaza, 2000). Therefore, dysphonia is defined as any "deviation in the vocal quality, pitch, loudness, and vocal effort that affect communication or produces a negative impact on the voice-related quality of life". In other words, it is an individual's reduction of the self-perceived physical, emotional, social or economic status due to a voice problem (Schwartz et al., 2009).

Voice disorders can be classified into: (Kotby et al., *2016*)

- I: Organic voice disorders: These are voice disorders where there are detectable morphological changes in the vocal apparatus, usually the vocal folds, e.g:
- 1) Congenital: congenital laryngeal web, sulcus glottides, larygomalacia, posterior laryngeal cleft and congenital vocal fold paralysis.
- 2) Traumatic (glottic trauma):
 - Mechanical trauma [blunt trauma with possible fracture of laryngeal cartilages and affection of the joints, sharp surgical trauma "cut throat", complications phonosurgery, endotracheal intubation].
 - Physical trauma [thermal burns, irradiation].
 - [caustics, fumes, • Chemical trauma acid from gastroesophageal reflux].
 - Acute or chronic vocal trauma.
 - Tussive trauma.
- 3) Inflammatory [Acute/ chronic laryngitis].
- 4) Neoplastic; Dysplastic
- 5) Neurological [spasmodic dysphonia].
- 6) Endocrinopathies [thyroid gland, pituitary gland, suprarenal gland, gonad disturances].
- 7) Status Post-laryngectomy.