

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Improvement of the biophysical properties of bone tissue sterilized by gamma radiation using different antioxidants"

Submitted to the Faculty of Science-Ain Shams University-In Partial fulfillment for the Degree of Doctor of Philosophy (PhD) in Biophysics

by

Naglaa Mohamed Samir El-Hansi

Assistant Lecturer, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt

Under Supervision Of

Prof. Dr. Abdelsattar M. Sallam,

Prof. of Biophysics, Physics Department, Faculty of Science, Ain ShamsUniversity.

Prof. Dr. Mona Salah El-Din Hassan Talaat,

Prof. of Biophysics, Physics Department, Faculty of Science, Ain ShamsUniversity.

Prof. Dr. Omar Sayed Desouky,

Prof. of Radiation Biophysics, Radiation Physics Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority.

Prof. Dr. Mahmoud A. Khalaf,

Prof. of Microbiology, Radiation Microbiology Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority.

Dr. Hoda Hassan Said,

Assis. Prof. of Radiation Biophysics, Radiation Physics Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority

> Physics Department Faculty of Science Ain Shams University 2021

APPROVAL SHEET

Title of the Ph.D. thesis

"Improvement of the biophysical properties of bone tissue sterilized by gamma radiation using different antioxidants"

Name of the candidate

Naglaa Mohamed Samir El-Hansi

Supervision committee:

(Signature)

Prof. Dr. Abdelsattar M. Sallam,

Prof. of Biophysics, Physics Department. Faculty of Science, Ain Shams University.

Prof. Dr. Mona Salah El-Din Hassan Talaat,

Prof. of Biophysics, Physics Department. Faculty of Science, Ain Shams University.

Prof. Dr. Omar Sayed Desouky,

Prof. of Radiation Biophysics, Radiation Physics Department, (NCRRT), Egyptian Atomic Energy Authority.

Prof. Dr. Mahmoud A. Khalaf,

Prof. of Microbiology, Radiation Microbiology Department, (NCRRT), Egyptian Atomic Energy Authority

Dr. Hoda Hassan Said,

Assis. Prof. of Radiation Biophysics, Radiation Physics Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority

> Head of Physics Department, Faculty of Science, Ain Shams University Prof. Dr. Nabil Ali Ameen Elframawy

Ph.D. thesis

Name of the candidate: Naglaa Mohamed Samir El-Hansi

Title: "Improvement of the biophysical properties of bone tissue sterilized by gamma radiation using different antioxidants"

Degree: Doctor Philosophy in Biophysics

Supervisors:

Prof. Dr. Abdelsattar M. Sallam- Prof. of Biophysics, Physics Department. Faculty of Science, Ain Shams University.

Prof. Dr. Mona Salah El-Din Hassan Talaat- Prof. of Biophysics, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Omar Sayed Desouky- Prof. of Radiation Biophysics, Head of Radiation Physics Department, (NCRRT), Egyptian Atomic Energy Authority.

Prof. Dr. Mahmoud A. Khalaf- Prof. of Microbiology, Radiation Microbiology Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority.

Dr. Hoda Hassan Said - Assis. Prof. of Radiation Biophysics, Radiation Physics Department, National Center for Radiation Research (NCRRT), Egyptian Atomic Energy Authority

Examinars:

Name: Naglaa Mohamed Samir El-Hansi

Degree: Ph. D.

Department: Physics – Biophysics Group

Faculty: Science

University: Ain-Shams

Graduation Date: 2007- Ain-Shams University

Registration Date: 2014

Date of Award: 2021

First and foremost, all thanks to **Allah** the Beneficent, the Merciful, for my success in completing this work. I would like to express my unlimited thanks to my **parents** for their patience and encouragement.

My sincere thanks and gratitude to my dear **husband** for his support and assistance in every step to complete this thesis in the best way possible.

I wish to express my utmost gratitude and deepest appreciation to **Prof. Abdelsattar M. Sallam**, Professor of Biophysics, Physics department, Faculty of Science, Ain Shams University for continuous supervision, sincere guidance and continuous engorgement. I owe him more than I can express for all the time, he spent in revising every detail.

No words can express how I am grateful for **Prof. Dr. Mona Salah El-Dín,** Professor of Biophysics, Physics department, Faculty of Science, Ain Shams University for her great efforts with me. Actually, she was so helpful and patient with me and she is worth of lots of thanks and gratitude. I consider myself fortunate to work under her supervision.

Special thanks are due to **Prof. Dr. Omar Sayed Desouky**-Prof. of Radiation Biophysics, Radiation Physics Department, , Egyptian Atomic Energy Authority for his valuable help. Without his generous and valuable assistance, this work would lose its value. It is an honor working under his supervision.

I wish to express my thanks to **Prof. Dr. Mahmoud A. Khalaf** Prof. of Microbiology, Radiation Microbiology Department,

National Center for Radiation Research, Egyptian Atomic Energy Authority for his precious guidance and generous and valuable assistance.

Words can never express my everlasting gratitude and thanks to **Dr. Hoda Hassan Said** - Assis. Prof. of Radiation Biophysics, Radiation Physics Department, National Center for Radiation Research, Egyptian Atomic Energy Authority, who spared no time or efforts at any time in providing me with her experience and continuous guidance while supervision every step in this work. I cannot evaluate her efforts in this thesis. I would like to express my thanks for her for everything.

Finally I would like to express my sincere thanks and deepest gratitude to thank my sisters (Wassmaa, Hiaa, Habiba, Hla) and my brothers (Diaa and Bahaa). Special thanks to my brother Bahaa El-Hansi for his great assistance in all steps of this thesis, and for his help to complete this thesis in the best way possible.

Thanks to all of my colleagues at the Atomic Energy Authority's National Center for Radiation Research and Technology (NCRRT) for their support, professional assistance, and encouragement.

My sincere appreciation also goes out to the Head of the Physics Department at Ain Shams University, as well as all of the department's staff members, for their unwavering encouragement and assistance.

Contents

CONTENTS

Acknowledgement	I
Contents	III
List of Figures	VI
List of Tables	XI
List of Abbreviations	XIII
Abstract	XV
Chapter one - Introduction and Literature Review	1
1.1 Introduction	1
1.2 Literature Review	3
1.2.1 Effect of gamma radiation sterilization on mechanical properties of bone graft	3
1.2.2 Free radical scavengers (antioxidants) and the	4
biomechanical properties of gamma sterilized bone	·
1.2.3 Effect of Hyudroxytyrosol (HT) on bone	6
1.2.4 Effect of Alpha Lipoic Acid (ALA) on bone	7
1.2.5 FTIR assessment of the biochemical composition of bone	9
1.2.6 XRD assessment of crystal structure of bone	11
hydroxyapatite	
1.2.7 Validation of radiation sterilization	13
Chapter two - Theoretical Aspects	15
2.1The hierarchical structure of bone	15
2.1.1The molecular components of bone	16
2.1.1.1 The collagen matrix and cross-links	16
2.1.1.2Mineral phase	17
2.1.1.3 Water	13
2.1.2 Relationships between water, organic matrix and mineral	20
2.2 Basic knowledge of bone grafting	21
2.2.1 Biological mechanism of bone grafting Hung, 2012	21
2.2.1.1 Osteoconduction	21
2.2.1.2 Osteoinduction	21
2.2.1.3 Osteogenesis	21
2.2.2 Types and tissue sources of grafts	21
2.2.3 Tissue banks and tissue processing	23
2.2.3.1 Procurement	23
2.2.3.2 Preservation and storage methods	24
2.2.3.3 Sterilization	24
2.3 Biomechanical assessment of bone strength	25

2.3.1 Factors affecting the mechanical properties of bone	27
2.3.2 Plasticity and toughness of bone	27
2.3.3 Microhardness and indentation testing of bone	27
2.3.4 Factors affecting microhardness of bone	29
2.3.5 The role of bone matrix composition in the mechanical	29
properties	
2.4 Radiation sterilization of tissue allografts	30
2.4.1 Radiation sterilization sources	30
2.4.2 Radiation sterilization dose	31
2.4.3 Effects of gamma rays on living organisms	31
2.4.4 Decimal reduction dose (D10) and radiation resistance of	32
micro-organisms	
2.4.5 Factors influencing response to radiation	33
2.4.6 Validation of the radiation sterilization process and	33
Method VD max	
2.5 Antioxidants	35
2.5.1 Hydroxytyrosol (HT)	35
2.5.1.1 The chemical structure	35
2.5.1.2 Biological activity of Hydroxytyrosol	35
2.5.2 Alpha Lipoc Acid (ALA)	36
2.5.2.1 The chemical structure	37
2.5.2.2 Antioxidant activity	37
2.6 Fourier transform infrared spectroscopy-Attenuated total	37
reflection (FTIR -ATR)	
2.6.1 Attenuated total reflectance (ATR)	38
2.6.2 Parameters that are commonly assessed for enamel, dentin	42
and bone and their importance	
2.6.2.1 Mineral to matrix ratio	42
2.6.2.2 Carbonate to phosphate ratio	42
2.6.2.3 Mineral maturity/Crystallinity	43
2.6.2.4 Collagen cross-links (Collagen maturity)	45
2.7 X-ray diffraction	46
Chapter three- Materials and methods	49
3.1Preparation of specimens	49
3.2 Pilot experiment and Antioxidants treatment	50
3.3 Gamma irradiation	51
3.4 Mechanical Tests	52
3.4.1Three-point bending test	52
3.4.2 Microhardness test	53
3.5 ATR-FTIR analysis	55

3.6 X-ray Diffraction (XRD) analysis	55
3.7 Validation of radiation sterilization	57
3.7.1 Bioburden estimation from untreated bone samples	57
3.7.2 Bioburden estimation of antioxidant treated bone samples	58
3.7.3 Procedure for Method VD maxSD	58
3.7.4 Isolation of bacteria	60
3.7.5 Identification of bacterial isolates	61
3.7.5.1 Staining of the isolated bacteria (Gram stain)	61
3.7.5.2 Biochemical testing	61
3.7.6 Radiation D10 determination	62
3.7.7 Standardization of bacterial cell suspension	63
Chapter four- Results and Discussion	64
4.1 Three-point bending and Microhardness tests	64
4.2 Fourier Transform Infrared Spectroscopy-Attenuated Total	68
Reflection (FTIR-ATR)	
4.3 X-ray Diffraction Analysis (XRD)	78
4.4Validation of radiation sterilization	81
4.4.1 Processing of Bone Allograft	81
4.4.2 Microbial Contaminants of Untreated Processed Bone	82
4.4.3 Characterization of microorganisms isolated from	83
Untreated Processed Bone	
4.4.4 Microbial Contaminants of Antioxidant treated Processed	84
Bone	
4.4.5 Determination of recovery efficiency	85
4.4.6 Average bioburden and verification dose of antioxidant	86
treated processed bone	
4.4.7 Validation of Radiation Sterilization	88
4.4.8 Characterization and Identification of microbial	90
contaminated antioxidant treated processed bone	
4.4.9 Radiation resistance of bacterial isolates	91
Conclusion	96
References	98
List of publications	121
الملخص العربي	
شکر و تقدیر	

LIST OF FIGURES

Figure	Title	Page
2.1	Hierarchical structural organization of bone.	15
2.2	Model of hierarchical structure of collagen fibrils.	16
2.3	The pathway of enzymatic and non-enzymatic cross-link formation in bone collagen.	17
2.4	Bone apatite crystal size.	18
2.5	Preferential orientation of biological apatite (BAp) nanocrystallite and collagen fiber in a long bone.	18
2.6	Schematic of possible ionic substitutions into hydroxyapatite lattice.	19
2.7	Schematic of the presence of water in bone at each hierarchical level of organization.	20
2.8	Mechanical testing of bone.	26
2.9	The seven levels of hierarchy with toughening mechanisms are depicted in the structure of bone. a, The seven levels of hierarchy b, the toughening mechanisms.	28
2.10	The typical indentations of common indentation tests.	29
2.11	Disintegration of ⁶⁰ Co.	31
2.12	Influence of gamma rays on water molecules.	32
2.13	Typical survival curve for a homogeneous microbial population.	33

2.14	Molecular structure of Hydroxytyrosol, oleuropein.	35
	Scheme 2.1 Hydroxytyrosol's mechanism of free radical scavenging.	36
	Scheme 2.2 ALA and DHLA structure. The chiral center that is denoted by an asterisk.	37
2.15	Schematic representation of different types of molecular vibrations.	38
2.16	Schematic representation of ATR principle.	39
2.17	Typical FTIR spectrum of bone showing the vibrational assignments of the most significant bands.	39
2.18	Structural formula with the vibrational modes of amide I, amide II, amide III, phosphate and carbonate.	41
2.19	The components of the spectral region of the v_2 carbonate band were evaluated by curve-fitting, demonstrating the various forms of carbonate substitution.	43
2.20	Spectral region of the v_1 , v_3 phosphate bands with underlying components identified by curve-fitting.	44
2.21	The ATR spectrum of bovine cortical bone between wavenumbers (400 and 2000 cm $^{-1}$). The splitting factor (SF) was calculated by drawing a baseline across the $v_4PO_4^{\ 3}$ - band (770–480 cm $^{-1}$) and then dividing the sum of the peak heights (A) and (B) by height of the valley between them, (C).	45
2.22	Typical FTIR spectrum of collagen obtained from demineralized bovine bone in the region of Amide I and Amide II, resolved to its underlying components.	46
2.23	(Left) Schematic representation of hydroxyapatite crystal structure with its lattice parameters. (Right)The Ca ions occupy two crystallographic non-equivalent sites (Ca I and	47