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Abstract

With the increasing size of medical datasets and their high dimensionality nature there arises
a significant need for methods to accelerate the processing and analysis. High dimensional
medical images may consume several hours and even days executing exhaustive analysis
processes, such as those employed in the classification of Alzheimer’s disease.

Alzheimer’s disease is a serious form of dementia. In 2018, fifty million people worldwide
has been reported living with dementia. This number will reach 152 million people by 2050
[95]. This vastly expanding disease causes a progressive decline in the mental abilities that
usually starts with memory loss and ends with cognitive and behavioral disorders. With no
current cure, treatments focus on slowing the progression of the disease and controlling its
symptoms. Early diagnosis by studying structural MRI (sMRI) is the key.

Image registration of sSMRI is a serious challenge in the field of medical image analysis
generally and for Alzheimer’s disease analysis specifically. The correct localization of brain
tissue deformation and determination of the tumor growth rely majorly on the accuracy of
the image registration process. Image registration techniques are computationally intensive
time-consuming tasks. Field Programmable Gate Arrays (FPGAs) have fast-evolving and
customizable hardware acceleration capabilities that promise to help speed up these tasks.

The work in this thesis presents analytical predictive solutions for the classification
of Alzheimer’s disease problem using unsupervised and supervised learning techniques.
The supervised learning solution run in an accelerated framework of a software/hardware

co-design model using FPGA hardware chips.



viii

The proposed image analysis uses texture features extracted from the gray level co-
occurrence matrix and voxel-based morphometry (VBM) neuroimaging analysis to classify
Alzheimer’s disease patients. VBM initially explores the differences in brain anatomy using
statistical parametric mapping. Unsupervised clustering techniques are investigated for an
early diagnosis of Alzheimer’s disease. Different supervised classification techniques are
studied as well to come up with the best classification accuracy. The studied techniques are
support vector machine, k-nearest neighbor, and decision tree. Moreover, feature selection
using entropy and feature reduction using principle component analysis are employed with
supervised learning techniques to overcome the curse of dimensionality hence contributing
to faster response. The thesis explores as well the discriminative power of certain anatomical
regions of interest (ROI) for classifying Alzheimer’s disease.

The proposed classification technique is accelerated using an optimized software/hardware
co-design model where a part of the VBM analysis runs on CPU, while the rest runs on
FPGA. FPGA’s acceleration power is used in the implementation of the diffeomorphic image
registration algorithm DARTEL as a part of the registration process in the VBM analysis. An
optimized and pipelined hardware architecture is proposed.

The proposed clustering technique provided a preliminary insight with an accuracy 76%,
while the proposed classification technique managed successfully to differentiate between
Alzheimer’s disease patients and normal controls with an accuracy of 93%. The proposed
classification technique proved as well that analyzing brain regions that include Hippocampus,
Cerebelum Left, Cerebelum Right, and Calcarine would lead to better time performance
results than analyzing the whole brain regions. This set of ROI discriminators recorded 4%
increase in the accuracy compared to whole brain method with only 7% of the whole brain
feature vector and a 16x speedup in the run time. The hardware acceleration of the DARTEL
registration algorithm resulted in a maximum speed up factor of 114x on function-level,
compared to the CPU, with a contribution of 8x faster for the overall performance in the

registration process of the software tool.
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