

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

STUDY OF THERMO-MECHANICAL TREATMENT AND MN, TI ADDITIONS OF CU-AL-NI SHAPE MEMORY ALLOYS

By Khaled Ahmed Amin Abdelghafar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

STUDY OF THERMO-MECHANICAL TREATMENT AND MN, TI ADDITIONS OF CU-AL-NI SHAPE MEMORY ALLOYS

By Khaled Ahmed Amin Abdelghafar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Metallurgical Engineering**

Under the Supervision of

Prof. Dr. Abdel-Hamid Ahmed Hussein Prof. Dr. Elsayed Mahmoud Elbanna

Professor of Metallurgy
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Cairo University

Professor of Metallurgy
Mining, Petroleum, and Metallurgical
Department
Faculty of Engineering, Some University

Prof. Dr. Mohamed Abdelwahab Waly

Professor of Metal Casting Foundry Technology Laboratory Central Metallurgical for R&D Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

STUDY OF THERMO-MECHANICAL TREATMENT AND MN, TI ADDITIONS OF CU-AL-NI SHAPE MEMORY ALLOYS

By Khaled Ahmed Amin Abdelghafar

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Metallurgical Engineering

Approved by the
Examining Committee

Prof. Dr. Abdel-Hamid Ahmed Hussien, Thesis Main Advisor

Prof. Dr. Elsayed Mahmoud Elbanna, Advisor

Prof. Dr. Mohamed Abdelwahab Waly, External Advisor

- Emeritus Professor at Foundry Technology Lab, Central Metallurgical Research and Development Institute (CMRDI)

Prof. Mahmoud Mohamed Ibrahim Tash, Internal Examiner

Prof. Dr. El-Zahraa Mohamed Yehia El-Baradie, External Examiner

- Emeritus Professor at Non-Ferrous Lab, Central Metallurgical Research and Development Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Khaled Ahmed Amin Abdelghafar

Date of Birth: 25/ 10 / 1992 **Nationality:** Egyptian

E-mail: Khaled.ahmed92@hotmail.com

Phone: 01112765006

Address: 25 Omar Elmokhtar, Samy Elgamal,

Mansoura, Egypt

Registration Date: 1 / 10 / 2017 **Awarding Date:** / / 2021

Degree: Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Abdel-Hamid Ahmed Hussein, (Thesis Main Advisor)
Prof. Dr. Elsayed Mahmoud Elbanna, (Advisor)
Prof. Dr. Mohamed Abdelwahab Waly, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Examiners:

Prof. Dr.: El-Zahraa Mohamed Yehia El-Baradie, (External

Examiner)

Central Metallurgical R&D Institute (CMRDI)

Prof. Dr.: Mahmoud mohamed Ibrahim Tash, (Internal

Examiner)

Prof. Dr. Abdel-Hamid Ahmed Hussien, (Thesis Main Advisor)
Prof. Dr. Elsayed Mahmoud Elbanna, (Advisor)
Prof. Dr. Mohamed Abdel Wahab Waly, (Advisor)

Central Metallurgical R&D Institute (CMRDI)

Title of Thesis:

STUDY OF THERMO-MECHANICAL TREATMENT AND Mn, Ti ADDITIONS OF Cu-Al-Ni SHAPE MEMORY ALLOYS

Key Words:

Shape memory alloy; martensitic transformation; austenite; solution treatment; X-Phase.

Summary:

There is no comprehensive study on the combined effect of both thermomechanical treatment and modification with alloying elements on the shape memory properties of Cu-Al-Ni shape memory alloy (SMAs).

Therefore, this work aimed at studying the effect of 85% thickness reduction through hot deformation as well as heat treatment on the martensitic transformation of Cu-Al-Ni-Ti-Mn SMAs. The samples were divided into two groups: the first group was solution treated at 900°C for 30 min. (S.T), and the other group was hot-rolled at 900°C followed by solution treatment at 900°C for 30 min. (H.R.S.T). The results showed that the hardness of the samples decreased with increasing the percent of Ni. The DSC investigations revealed that the martensite start temperature (Ms) decreased due to the addition of both Ti and Mn compared to the predicted Ms reported in the literature.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Khaled Ahmed Amin Abdelghafar Date: //2021.

Signature:

Acknowledgments

I would like to express my deep regards and sincere gratitude to Prof. Dr. Abdel-Hamid A. Hussein, Faculty of Engineering, Cairo University for his care, kind supervision, encouragement, constant efforts, and valuable stimulating guidance and fruitful discussion throughout this study.

I offer my profuse thanks with humble reverence to Prof. Mohamed Waly, Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for his invaluable guidance and support. He was a beacon light, whose constant efforts and encouragement proved to be a parallel stimulus in completing this research successfully.

I would like to thank Prof. Dr. El-Sayed M. El-Banna, Faculty of Engineering, Cairo University for his supervision and support.

I am grateful to Dr. Mervat Ibrahim, Dr. Shimaa El-hadad and Dr. Mohamed Morad, Foundry Technology Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for their support and co-operation in the hours of need and for their expert.

Special thanks to Prof. El-Zahraa Mohamed yahia El-Baradie for giving me the access to her lab facilities.

Special thanks to Prof. Ahmed Ismail Zaky Farahat for giving me the access to metal forming facilities.

Special thanks for Ms. Nadiaa and Mr. Tarek for providing the help in preparing the samples for metallographic investigation.

Last but not least, special thanks are due to the staff of Foundry Technology Laboratory of CMRDI and particularly metallographic, melting, workshop staff for their sincere help.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	IX
ABSTRACT	X
CHAPTER 1 : INTRODUCTION	1
CHAPTER 2 : LITERATURE REVIEW	3
2.1. INTRODUCTION	2
2.2. PHYSICAL MEANING OF SHAPE MEMORY EFFECT	
2.3. GENERAL FEATURES OF SMA	5
2.3.1. ONE WAY SME	
2.3.2. TWO WAY SME	5
2.4. PHENOMENON OF SUPERELASTICTY/PSEUDOELASTICITY	6
2.5. INVESTIGATING TOOLS OF SME	7
2.5.1. DIFFERENTIAL SCANNING CALOMETRY ANALYSIS	7
2.6. CATEGORIES OF COMMERCIAL SHAPE MEMORY ALLOYS	
2.7. COPPER BASED SMAS	9
2.7.1. COPPER ZINC ALUMINUM SMAs	
2.7.1. COPPER ALUMINUM BERYLLIUM SMAs	10
2.3.1. COPPER ALUMINUM NICKEL SMAs	10
2.8. MANUFACTURING TECHNIQUES OF SHAPE MEMORY ALLOYS	512
2.8.1. PROCESSING OF COPPER BASED SMAs	
2.8.1.1. RAW MATERIALS	
2.8.1.2. LIQUID METALLURGY ROUTE	
2.8.1.3. INGOTS FORMING AND SHAPING	
2.9. CHARACTERISTICS OF MARTENSITIC TRANSFORMATION	
2.10. CRYSTALLOGRAPHIC CHARACTERISTICS OF SMAS	
2.11. INFLUENCE OF ALLOYING ELEMENT ADDITIONS ON THE CU	
AL-NI SMAS.	
2.11.1. MARTENSITIC START TEMPERATURE OF CU-Al-Ni SMAs	
2.11.2. INFLUENCE OF Mn & B ADDITIONS ON MECHANICAL PROPERTIES	
2.11.3. EFFESCT OF BERYLLIUM ADDITION ON MECHANICAL PROPERTIE	
2.11.4. EFFECT OF Ti, Zr, Nb & V ADDITIONS THE MECHANICAL PROPERTY	
2.12. APPLICATIONS OF CU-BASED SMAS	
	0
CHAPTER 3 : EXPERIMENTAL WORK	25
3.1. MATERIALS	25
3.2. SAMPLES PREPARATION	
3.2.1. CASTING PROCESS	
3.2.2 HOT POLLING OF SAMPLES	

3.2.3. MACHINING OF ROLLED SHEETS	28
3.3. DETERMINATION OF THE TRANSFORMATION TEMPERA	ATURES 30
3.4. HEAT TREATMENT PROCESS	31
3.5. MICROSTRUCTURE INVESTIGATIONS	
3.5.1. OPTICAL MICROSCOPE	
3.5.2. SCANNING ELECTRON MICROSCOPE	
3.6. X-RAY DIFFRACTION ANALYSIS	31
3.5. MICROSTRUCTURE INVESTIGATIONS	
3.7. MECHANICAL TESTS	34
3.7.1. HARDNESS TEST	34
3.7.2. TENSILE TEST	35
3.7.3. COMPRESSION TEST	36
CHAPTER 4: RESULTS AND DISCUSSION	37
4.1. MICROSTRUCTURE & XRD ANALYSIS	37
4.2. EDX ANALYSIS	41
4.3. RECRYSTALLIZATION OF HOT-ROLLED SAMPLES	
4.4. TRANSFORMATION TEMPERATURES	
4.5. MECHANICAL PROPERTIES	52
4.5.1. HARDNESS RESULTS	
4.5.2. COMPRESSION STRENGTH OF S.T SAMPLES	
4.5.3. TENSILE STRENGTH OF H.R.S.T SAMPLES	53
4.5.4. SHAPE MEMORY PROPERTIES	56
4.6. FRACTURE SURFACE	57
CHAPTER 5 : CONCLUSIONS	(2)
REFERENCES	64

List of Tables

Table 2.1: physical properties of commercial shape memory alloys	9
Table 2.2: Categories of shape memory actuators	23
Table 2.3: Application window of commercial SMAs	
Table 3.1: Chemical composition of the investigated alloys	
Table 4.1: Summary of chemical analysis of the X-phase precipitates	
Table 4.2: Average grain sizes of the investigated alloys	
Table 4.3: Thermodynamic data of the martensitic transformation for the S.	Γ samples.
Table 4.4: Thermodynamic data of the martensitic transformation for the samples.	e H.R.S.T
Table 4.5: Hardness values of the investigated alloys	
Table 4.6: Summary of mechanical properties for S.T & H.R.S.T samples of talloys	the studied
anoys	,

List of Figures

Figure 2.1: Microscopic demonstration of SME	3
Figure 2.2: Crystallographic changes related to phenomenon of SME	
Figure 2.3: Demonstration of one way SME	
Figure 2.4: Illustration of two-way SME	6
Figure 2.5: Superelasticity behavior	
Figure 2.6: Standard DSC thermogram for SMA	
Figure 2.7: Strain recovery versus ε _{PE}	10
Figure 2.8: 2D section of Cu-Al phase diagram, at 4 % Ni content	11
Figure 2.9: Effect of Al percentage on the transformation temperatures (a)Ms&	
temperatures of entire forward transformation, (b) $Ms(\beta)$, $Ms(\gamma)$, $Mf(\beta)$, and $M_f(\beta)$	(γ`),
(c)As and A _f temperatures of entire reverse transformation, (d)As(β '),As(γ '), A _f (β`),
and $A_f(\gamma)$	12
Figure 2.10: (a) the lattice structure of DO3 austenite, (b) lattice corresponde	ence
between 18R martensite and DO3 austenite	
Figure 2.11: Schematic representation of the austenite/martensite interface, identify	ying
the habit plane	
Figure 2.12: (a) DSC thermograms of Cu-Al-Ni SMAs, (b) Ms transformation	tion
temperatures as a function of aluminum concentration, and (c) the enthalpy related	
Al content	
Figure 2.13: DSC curves for: (a) base Cu-Al-Ni SMA; (b) modified with 0.2Ti;	(c)
modified with 0.4Mn; and (d) modified with 0.2Zr	
Figure 2.14: Stress-strain curves of Cu-based SMA modified with Be at ro	
temperature	
Figure 2.15: Operating and the transformation temperatures for commercial SMAs	20
Figure 2.16: Application of SMAs micro-actuators in automotive valves	21
Figure 2.17: Applications of SMAs in civil engineering (a) isolation system	for
buildings, (b) spring isolation device, (c) tendon isolation system	22
Figure 3.1: Electric resistance furnace using in melting process	25
Figure 3.2: Pilot scale rolling mill machine	26
Figure 3.3: Macrograph of as-cast ingot (a), hot rolled sample (b)	
Figure 3.4: Schematic representation of the used thermo-mechanical cycle	27
Figure 3.5: Macrograph of machined tensile test samples	
Figure 3.6: (a) compression test samples, (b) as-cast rod	28
Figure 3.7: Macrograph of the machine sheets via wire cutting	
Figure 3.8: Differential scanning calorimetry apparatus	30
Figure 3.9: The used muffle furnace for the heat treatment process	32
Figure 3.10: Zeiss Axiotech 30 optical microscope	32
Figure 3.11: Illustration of average grain size calculation process	
Figure 3.12: Scanning electron microscope (SEM)	
Figure 3.13: Hardness test machine	
Figure 3.14: Shimadzu universal testing machine	
Figure 3.15: Designed shape recovery test for H.R.S.T samples	
Figure 3.16: Typical shape recovery test for S.T samples	
Figure 4.1: SEM micrographs of S.T samples of the investigated alloys (a) alloy 2N,	
alloy 3N & (c) alloy 4N	

Figure 4.2: SEM micrographs of H.R.S.T samples of the investigated alloys (a) alloy
2N, (b) alloy 3N & (c) alloy 4N
Figure 4.3: XRD pattern of S.T samples40
Figure 4.4: XRD pattern of H.R.S.T samples40
Figure 4.5: EDX analysis of the X-phase precipitates of S.T samples (a) 2N alloy, (b)
3N alloy, (c) 4N alloy42
Figure 4.6: EDX analysis of the X-phase precipitates of S.T samples (a) 2N alloy, (b)
3N alloy, (c) 4N alloy43
Figure 4.7: optical micrographs of (a) H.R.S.T sample for alloy 2N, (b) H.R.S.T sample
for alloy 3N, (c) H.R.S.T sample for alloy 4N45
Figure 4.8: heating/cooling DSC curve of S.T samples (a) alloy 2N, (b) alloy 3N & (c)
alloy 4N
Figure 4.9: Comparison of expected and actual martensite start temperatures50
Figure 4.10: Trend of actual transformation temperatures of S.T samples50
Figure 4.11: heating/cooling DSC curve of H.R.S.T samples (a) alloy 2N, (b) alloy
3N& (c) alloy 4N
Figure 4.12: trend of actual transformation temperatures of H.R.S.T samples52
Figure 4.13: Hardness results for the studied alloys53
Figure 4.14: Compression stress-strain curve for S.T samples54
Figure 4.15: Tensile stress-strain diagram of H.R.S.T samples55
Figure 4.16: Shape memory recovery ratio of both H.R.S.T & S.T samples57
Figure 4.17: Shape memory effect measurement of S.T samples (a) 2N alloy, (b) 3N
alloy, (c) 4N alloy58
Figure 4.18: Shape memory effect measurements of H.R.S.T samples (a) 2N alloy, (b)
3N alloy, (c) 4N alloy
Figure 4.19: fracture morphology of polycrystalline Cu-Al-Ni-Mn-Ti alloys (a) S.T
sample of 2N alloy, (b) H.R.S.T sample of 2N alloy, (c) S.T sample of 3N alloy, (d)
H.R.S.T sample of 3N alloy, (e) S.T sample of 4N alloy & (f) H.R.S.T sample of 4N
alloy60
Figure 4.20: Transgranular cracks of S.T samples (a) 2N ally, (b) 3N alloy, (c) 4N alloy
61
Figure 4.21: Fracture dimples of H.R.S.T samples surrounded by X-phase precipitates
(a) 2N alloy, (b) 3N alloy, (c) 4N alloy62

Nomenclature

SEM Scanning Electron Microscopy

OM Optical Metallography

EDS Energy Dispersive X-Ray Spectroscopy
DSC Differential Scanning Calorimetry

SMA Shape Memory Alloy
SME Shape Memory Effect
18R Monoclinic Martensite
2H Hexagonal Martensite

B2 Ordered Body Center Cubic. L2₁ F.C.C superlattice structure

DO₃ Ordered Austenite

 $\begin{array}{ccc} A_s & & Austenite \ Start \ Temperature \\ A_f & Austenite \ finish \ Temperature \\ M_s & Martensite \ Start \ Temperature \\ M_f & Martensite \ finish \ Temperature \\ VHN & Vickers \ Hardness \ Number \end{array}$