

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

SYNTHESIS OF GRAPHEME-HYDROXYAPATITE NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS FROM WASTEWATERS

Submitted By

Osama Hassan Radwan Abdelbar

B.Sc. of Science (Chemistry/Zoology), Faculty of Science, El-Menofia University, 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

SYNTHESIS OF GRAPHEME-HYDROXYAPATITE NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS FROM WASTEWATERS

Submitted By Osama Hassan Radwan Abdelbar

B.Sc. of Science (Chemistry/Zoology), Faculty of Science, El-Menofia University, 2004

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree

Environmental Sciences Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Raga Al-Shekh Shehyb

Prof. of Analytical Chemistry Faculty of Science Zagazig University

2-Prof. Dr. Wael Hessen Hegazy

Prof. of Inorganic Chemistry, Head Department of Chemistry Faculty of Science Suez University

3-Prof. Dr. Ashraf Abdel-Aety Mohamed

Prof. of Analytical Chemistry Faculty of Science Ain Shams University

4-Dr. Mohamed Abdel-Hay Ahmed

Associate Prof. Physical Chemistry Faculty of Science Ain Shams University

2021

SYNTHESIS OF GRAPHEME-HYDROXYAPATITE NANOCOMPOSITE FOR THE REMOVAL OF HEAVY METALS FROM WASTEWATERS

Submitted By Osama Hassan Radwan Abdelbar

B.Sc. of Science (Chemistry/Zoology), Faculty of Science, El-Menofia University, 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Ashraf Abdel-Aety Mohamed

Prof. of Analytical Chemistry Faculty of Science Ain Shams University

2-Dr. Mohamed Abdel-Hay Ahmed

Associate Prof. Physical Chemistry Faculty of Science Ain Shams University

2021

سورة البقرة الآية: ٣٢

ACKNOWLEDGMENTS

All gratitude is due to ALLAH for His continuous support all over our life.

Then, I would like to express my great appreciation and dedicated this work to **Prof. D. Ashraf Abdel-Aaty Mohamed** for his kind supervision and advice to accomplish this work. I would like to express my deepest sense of gratitude to my supervisor

Prof. Or Mohamed Abdel-Hay Ahmed, who has readily guided and helped me in planning.

I do highly appreciate the help of all the members of the institute of environmental studies and research and all my teachers for their kindness, great help and technical support.

I am very grateful and I can't express my deep gratitude to all of my family especially my wife for their encouragement and help throughought this work.

Cairo, Egypt2021

ABSTRACT

Heavy metal pollution is a serious environmental problem that can be cured by different adsorbents. Herein, a new hydroxyapatite / graphene oxide nanocomposite (HAp/GO) material was synthesized from waste eggshell as a green and eco-friendly adsorbent for the effective removal of heavy metals (e.g., Cd, Pb, Cr, Ni, Co) from wastewaters. Nano-structured HAp was synthesized by calcination of waste eggshell followed by hydrothermal treatment in the presence of phosphate solution. However, GO was synthesized using the Hummar's method. The HAp/GO nanocomposite was synthesized from the HAp and GO precursors by ultrasonic treatment. The morphology, composition, crystal structure, functionality and stability of the synthesized sorbent were evaluated using Fourier transform infrared (FTIR), spectrophotometry Raman spectrometry, high transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and N₂-BET (Barrett-Emmett-Teller) surface area measurement techniques. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was used to monitor the equilibrium concentrations of the investigated metal ions. The effects of the initial concentration of heavy metals, the dosage of HAp/GO adsorbent, working temperature, and the solution pH on the adsorption capacity was investigated. The synthesized HAp/GO was adopted to achieve superior simultaneous removal efficiencies (≥ 90 %) for (Cd, Pb, Cr, Ni, Co) metal ions in a given polluted sample

Contents

contents	page
Contents	i
List of figures	ix
Chapter 1	1
1.Environment	2
2.Environmental Pollution	2
3. Water Pollution:	3
3.1. Kinds of water pollutants:	7
3.1.1. Inorganic Pollutants:	7
3.1.2. Organic Pollutants:	7
4.Air Pollution	9
5.Soil Pollution:	10
6.Biological Pollution:	11
7.Radiological & Nuclear pollution:	11
8.Aim of this study	12
8.1.environmental impact associated with eggshell	12
disposal:	
8.2. environmental contamination and pollution by	13
heavy metals	
8.2.1heavy metals Sources	15
8.2.2.Environmental impacts of heavy metals:	16
8.2.3. Effect of heavy metals on human body:	18
Chapter 2	24
LITERATURE REVIEW	25
1.Removal of heavy metals from waste water:	25
Some universal methods for remove heavy metals from	26
water	
1.1.Precipitation:	26
1.2.Ion exchange:	27
1.3.Electro-winning:	27
1.4. Electro-coagulation:	28

List of Contents 🝣

contents	page
1.5.Cementation:	29
1.6.Reverse osmosis:	30
2. Natural waste materials as effective absorbents for	31
removal of heavy metal from waste water:	
3.Hydroxyapatite powder (Ca10(PO4)6(OH)2, HA) from	32
eggshell as effective absorbent for removal of heavy metal	
from waste water:	
3.1.synthsis methods:	33
3.1.2.Hydro/solvo- thermal:	34
3.1.3.Solid state:	
3.1.4.Sol-gel:	
3.1.5Self-propagating combustion synthesis:	37
3.1.6.Emulsion/Micro-emulsion:	38
4. Hydroxyapatite/Graphene oxide nanocomposites and	41
hybrids:	
4.1. Graphene oxide structure and properties:	42
4.2.Preparation of GO:	43
MATERIALS AND METHODS	48
1.Introduction	48
2.Materials:	48
3.Chemicals:	48
4.Methods:	48
4.1.Synthesis of hydroxyapatite powder	48
(Ca10(PO4)6(OH)2, HAp) from waste eggshell:	
4.2. Synthesis of Graphene Oxide (GO):	49
4.3. Hydroxyapatite-Graphene oxide nanocomposite	50
(HAp/GO) synthesis:	
5.Graphene oxide - hydroxyapatite nanocomposite (HAp)	51
characterization	
5.1. Morphological characterization:	51
5.1.1.Transmission electron microscopy (TEM):	51
5.1.2. Scanning Electron Microscope (SEM):	52

contents	page
5.2.X-ray diffraction (XRD) patterns:	53
5.3. Fourier Transform Infrared (FTIR) spectroscopy	54
measurements:	
5.4.Raman Spectra:	54
5.5.The N ₂ -BET(Barrett–Emmett–Teller) surface area	55
measurement:	
5.7.Inductively Coupled Plasma Mass Spectrometry	56
(ICP-MS) for measuring the equilibrium	
concentration of heavy metals:	
6.Sorption study:	56
6.1. Determination of the sorption capacity:	57
6.2. Kinetics of adsorption:	57
6.3.adsorption isotherm models:	58
Chapter 4	58
RESULTS AND DISCUSSION	61
1.Material characterization:	61
1.1.Fourier Transform Infrared spectroscopy (FTIR)	61
results:	
1.2.Raman spectra analysis:	63
1.3. X-ray diffraction (XRD) patterns of the	64
prepared samples	
1.4. Elemental composition of HAp/GO by energy	65
dispersive X-ray analysis (EDX).	
1.5.Morphological analysis	66
1.5.1Transmission electron microscopy (TEM):	66
1.5.2.Scanning electron microscopic images (SEM):	67
1.6.Surface area mesurement for prepared HAp/GO:	68
2.Sorption study:	69
2.1. Inductively Coupled Plasma-Mass	69
Spectrometry (ICP-MS) used to measure the	
equilibrium concentration of metal ions.	
2.2.Effect of contact time on the adsorption capacity:	70

List of Contents 📚

contents	page
2.3.Effect of initial metals concentration on the	70
adsorption capacity:	
2.4. Effect of adsorbent dosage on the adsorption	71
capacity	
2.5.Effect of temperature on the adsorption capacity:	72
2.6.Effect of pH on the adsorption capacity	73
2.7.Kinetics of adsorption:	74
2.8.Adsorption isotherm models:	77
Conclusion	80
Summery	83
References	87

LIST OF TABLES

Tables	page
Table 1: synthesis methods of hydroxyapatite	39
Table 2: Concentrations of heavy metal ions in the	69
composite mixture before and after treatment with HAp,	
GO, HAp/GO nanoparticles.	
Table 3: Kinetics of adsorption	77
Table 4: Adsorption isotherm models	79

LIST OF FIGURES

figures	page
Figure 1 water pollution	6
Figure 2 air pollution	
Figure 3 soil pollution	10
Figure 4 Heavy metals sources	14
Figure 5 Sources of heavy metals and their cycle in the environment	15
Figure 6 methods for removing heavy metals from water	26
Figure 7 Precipitation method	27
Figure 8 Ion exchange process	28
Figure 9 Electro-winning method	28
Figure 10 Electro-coagulation method	29
Figure 11Cementation method	30
Figure 12 Reverse osmosis method	30
Figure 13 Preparing graphene oxide (GO).	44
Figure 14 Preparation methods of graphene oxide (GO).	46
Figure 15 hydroxyapatite powder	49
Figure 16 Graphene Oxide (GO) powder	50
Figure 17 Graphene oxide-hydroxyapatite (HAp/GO) nanocomposite	51
Figure 18 Transmission electron microscope (TEM)	52
Figure 19 Scanning Electron Microscope (SEM)	53
Figure 20 X-ray diffraction (XRD) spectrometer	53
Figure 21 Fourier Transform Infrared (FTIR) spectrometer	54
Figure 22 Raman spectrometer	55
Figure 23 N ₂ -BET(Barrett–Emmett–Teller) surface area unit	56