

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of Central Auditory Processing in Individuals with Occupational Noise exposure

Thesis

Submitted for Partial Fulfillment of Master Degree in Audiology

Presented by Nermeen Mohy el din Mahmoud

M.B., B.CH. Faculty of Medicine, Ain Shams University

Under Supervision of **Prof. Dr. Somia Tawfik**

Professor of Audiology - ENT Department Faculty of Medicine- Ain Shams University

Prof. Dr. Dalia Mohammed Hassan

Professor of Audiology - ENT Department Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Somia Tawfik**, Professor of Audiology - ENT Department, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions which enriched this work.

I would like to express my warmest gratitude to **Prof Dr. Dalia**Mohamed Hassan, Professor of Audiology - ENT Department Faculty
of Medicine- Ain Shams University, for her sincere efforts, great help,
outstanding support, active participation and guidance.

I can't find the appropriate words to express how much I'm grateful to my **Family**, my **compassionate husband** and my **beautiful children**. There is nothing I can offer to them could be comparable to anything they had offered to me.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nermeen Mohy el din Mahmoud

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Introduction and Rationale	1
Aim of the Work	
Review of Literature	
Chapter One Occupational Noise Exposure and its Haza	rds6
Definition of noise	6
Classification of noise	6
Limiting noise exposure	12
Damage-risk criteria	13
Measurement of noise	
Noise control measures	20
Chapter Two Effects of Noise Exposure on the Auditory	System 29
Effects of noise exposure on the peripheral auditory sys	tem29
Effects of Noise exposure on the central auditory system	34
Noise-Induced Hidden Hearing Loss (NIHHL)	37
Effects of Noise Induced Hidden Hearing Loss on centra	al auditory
processing	40
Effect of NIHHL on temporal processing	47
Effect of noise exposure on selective auditory attention.	50
Effect of noise exposure on dichotic listening ability	50
Clinical Implications and Future Directions	52
Materials and Methods	56
Results	66
Discussion	96
Summary	118
Conclusion	121
Recommendations	122
References	123
Appendices	149
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	OSHA and NIOSH criteria for exposure in workplace	
Table (2):	Some substitution methods that of adopted to reduce the level of nois workplace.	e in a
Table (3):	Age distribution in the study and ogroups	
Table (4):	Gender distribution in the study as control groups	
Table (5):	Number and percentage of subjects study group according to the chara noise exposure	cter of
Table (6):	Classification of the study group acc to the duration of noise exposure in y	•
Table (7):	Classification of the study group acc to the number of hours of noise ex- per day	posure
Table (8):	Classification of the study group acc to the number of working days per w	•
Table (9):	Comparison between control group study group (in number and perceas regards Q1	ntage)
Table (10):	Comparison between control and groups as regards Q2	-
Table (11):	Comparison between control and groups as regards Q3	v
Table (12):	Comparison between control and groups as regards Q4	•
Table (13):	Comparison between control and groups as regards Q5	study

List of Tables Cont...

Table No.	Title	Page No.
Table (14):	Comparison between control and groups as regards Q6, 7, 8, 9:	•
Table (15):	Questions for the study group only:	76
Table (16):	Mean, Standard deviation, t and p of pure tone audiometry thresholds control and study groups:	in the
Table (17):	Mean, Standard deviation, t and p of Speech reception thresholds (Standard groups	RT) in
Table (18):	Word discrimination scores in both and control groups:	•
Table (19):	Comparison between character of and degree of hearing loss	
Table (20):	Relation between duration of exposure and degree of hearing l	oss at
Table (21):	Correlation between degree of hearing at 4 khz and duration of noise expositions.	•
Table (22):	Comparison between control and groups as regards questionnair auditory processing disorders	e for
Table (23):	Results of the central auditory producestionnaire in the study group	•
Table (24):	Central auditory processing test	
Table (25):	Mean, Standard deviation, range, t values of temporal auditory proc tests in the study and control groups	essing

List of Tables Cont...

Table No.	Title	Page No.
Table (26):	Mean, Standard deviation, range, to values of DD and SPIN tests restricted and control groups	ults in
Table (27):	Number and percentage of subject affected central auditory pro- abilities in the study group subjects	cessing
Table (28):	Number and percentage of a affected in the study group	
Table (29):	Table showing the relation between noise to abnormalities in all auditory processing tests results study group.	central in the
Table (30):	Correlation between duration of exposure and central auditory tests among study group	results
Table (31):	Correlation between duration of exposure & non occupational exposure questionnaire scores in the group	noise e study

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The average decibel ratings of familiar sounds	
Figure (2):	Hierarchy of controls	21
Figure (3):	Hearing protection devices	28
Figure (4):	Diagram for the hypothesis of deficits in NIHHL	-
Figure (5):	Hypothetical causal links between induced loss of AN fibers	
Figure (6):	Mean pure tone thresholds in the cand study groups (Right ears)	
Figure (7):	Mean pure tone thresholds in the cand study groups (left ears)	
Figure (8):	Scatter plot showing the correlation between the degree of hearing los KHz (v-dip) and duration of exposure.	s at 4 noise
Figure (9):	Number and percentage of parcomplaints in central auditory procequestionnaire for the study group.	essing
Figure (10):	Error Bar comparing the GIN (RT) for the two groups	
Figure (11):	Error Bar comparing the GIN (LT) for the two groups	
Figure (12):	Scatter plot showing correlation be scores of DD version II in the righ of the study group and the durat noise exposure.	t ears ion of

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	Scatter plot showing correlation be scores of DD version II in the Left of the study group and the duration of exposure.	ears of f noise
Figure (14):	Scatter plot showing correlation be scores of DPT in the Right ears study group and the duration of exposure.	of the noise
Figure (15):	Scatter plot showing correlation be scores of DPT in the Left ears study group and the duration of exposure	of the noise
Figure (16):	Scatter plot showing correlation be the duration of noise exposure in (and the score of noise exp questionnaire in the study group	years) posure

List of Abbreviations

Abb.	Full term
ABR	Auditory Brainstem Response
<i>ANFs</i>	Auditory Nerve Fibers
<i>APD</i>	Auditory Processing Disorder
<i>ARHL</i>	Age Related Hearing Loss
<i>ASHA</i>	American Speech-Language-Hearing Association
<i>CAP</i>	Compound action potential
	Central auditory processing disorders
<i>CDC</i>	Centers for Disease Control and Prevention
<i>DD</i>	Dichotic digits test
<i>DPT</i>	Duration pattern test
<i>GIN</i>	Gap in noise test
<i>HPDs</i>	Hearing Protective Devices
<i>IHCs</i>	Inner Hair cells
<i>NIDCD</i>	National Institute of Deafness and Other
	$Communication\ Disorders$
<i>NIHHL</i>	Noise Induced Hidden Hearing loss
<i>NIHL</i>	Noise induced hearing loss
NIOSH	National Institute for Occupational Safety and Health
<i>NVDT</i>	Nonverbal dichotic test
<i>OAE</i>	Otoacoustic emissions
<i>OHCs</i>	Outer hair cells
ONIHL	Occupational noise induced hearing loss
<i>OSHA</i>	Occupational Safety and Health
	Adminstration
<i>PEL</i>	Permissible Exposure Limit
<i>PTA</i>	Pure-tone audiometry
<i>PTS</i>	Permenant Threshold Shift
<i>REL</i>	$Recommended\ Exposure\ Limit$

List of Abbreviations Cont...

Abb.	Full term
CCM	
SGNs	Spiral Ganglion Neurons
<i>SNHL</i>	Sensorineural hearing loss
<i>SNR</i>	Signal to noise ratio
<i>SPIN</i>	Speech in noise test
<i>SPL</i>	Sound pressure level
<i>SR</i>	$ Spontaneous\ Rate$
<i>TCST</i>	Time compressed speech test
<i>TTS</i>	Transient Threshold Shift
<i>U.S</i>	United states.
<i>WHO</i>	World Health Organization

INTRODUCTION AND RATIONALE

Tearing loss due to noise exposure in the workplace is a Lsignificant health problem worldwide (Nelson et al., 2005; Śliwińska et al., 2017). Occupational noise induced hearing loss (ONIHL) is responsible for 16% of cases of disabling hearing loss in adults (Neitzel et al., 2017).

The impacts of occupational noise exposure cause a financial and disease burden on both individual and society. Previous studies have indicated that workers employed in the construction, manufacturing, mining, agriculture, transportation, industries, military personnel, and musicians have the highest risk for ONIHL (Basner et al., 2014).

Accordingly, the Occupational Safety and Health Administration (OSHA) provides workplace guidelines for noise exposure limits whereas the National Institute for Occupational Safety and Health (NIOSH) provides more conservative recommendations on exposure limits (OSHA, 1983; NIOSH, 1998).

Occupational NIHL develops gradually over time and is a function of continuous or intermittent noise exposure. This is in contrast to occupational acoustic trauma which is characterized by a sudden change in hearing as a result of a single exposure to a sudden burst of sound. Exposure that damage hearing isn't necessarily painful or even annoying (Mirza et al., 2018).