

Role of Autophagy in the Antitumor Activity of Aloin in Breast Cancer Cells

Thesis Submitted by Asmaa Kamal Mansour Mohamed El-Gendy

M.Sc. in Biochemistry (2008) Award of the Degree of Doctor of Philosophy in Biochemistry

Supervised by Prof. Dr. Amr Youssef Esmat

Prof. of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Hala M. Ghanem

Prof. of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Mahmoud Nour El-Din El-Rouby

Prof. of Immunology & Virology National Cancer Institute Cairo University

Prof. Mahmoud M. Said

Prof. of Biochemistry Faculty of Science Ain Shams University

Dr. Emad K, Ibrahim

Assistant Prof. of Biochemistry Faculty of Science Ain Shams University

(قَالُولْ سُبْحَانَكَ لاَ عِلْمَ لَنا لِإلاَّ مَا عَلَمْ لَنا لِإلاَّ مَا عَلَمْ الْمَلِيمُ (الْمَلِيم) عَلَمْ تَنا لِإِنَّكَ أَنتَ (الْعَلِيمُ (الْمَلِيم)

صَّلُ وَالسَّا الْعُطَّهِينَ الْعُطُهِينَ الْعُطُهِينَ الْعُطُهِينَ الْعُطُهِينَ الْعُطُهِينَ الْعُلِمَةِ اللهِ اللهِ (١٢)

Department of Biochemistry

Biography

Name Asmaa Kamal Mansour Mohammed Elgendy

Date of Graduation and

Education

May 2001, Faculty of Girls for Arts, Science

and Education

Degree Awarded M.Sc in Biochemistry and Nutrition

2008

Occupation Chemist at the General Organization of

Emport and Export- Ministry of Trade and

Industry

Declaration

This thesis has not been submitted for a degree at this or any other university

Asmaa Kamal Mansour Mohamed Elgendy

Acknowledgements

First and foremost, many thanks are due to **Almighty Allah**, for giving me the knowledge, ability and opportunity to undertake this research study and to complete it satisfactorily. Without His blessings, this achievement would not have been possible.

I would like to express my deep gratitude and sincere appreciation towards **Prof. Dr. Amr Youssef Ezz El-Din Esmat**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for suggesting the point, for his perpetual guidance, creative thinking, valuable suggestions, fruitful discussion and profound revision of the thesis.

I'm greatly indebted to express my special thanks and great appreciation to **Prof. Dr. Hala Mostafa Ghanem** for giving me the opportunity to work under her supervision. This thesis would have not been possible without her valuable guidance, continuous support and patience throughout this thesis.

My sincere gratitude is also extended to **Prof. Dr. Mahmoud Mohamed Said**, Professor of Biochemistry,

Faculty of Science, Ain Shams University, for his help,

profound revision of the thesis, tremendous effort with the statistical analysis, constant guidance, sincere encouragement, valuable advice and criticism.

My sincere gratitude is also extended to Prof. Dr. Mahmoud Nour El-Din El-Rouby, Professor of Immunology and Virology, Cancer Biology Department, National Cancer Institute for providing me laboratory facilities and his tutorial assistance with the practical part of this work, as well as his valuable comments on the thesis and his useful advice throughout this work and for his fatherly attitude.

My appreciation goes also to **Dr. Emad Khairy Ibrahim**, Ass. Prof. of Biochemistry, Faculty of Science, Ain Shams University, for his supervision, fruitiful discussion, cooperation, understanding, patience, personal guidance and great help in writing the thesis.

Deepest thanks and gratitude are due to **Prof. Dr.Hala Galal Mohamed El-Tantawi,** Prof. of cell and tissue biology, Zoology department, Faculty of Science, Ain Shams University, for her great help with the transmission electron microscope examination and comments.

I am deeply grateful and I would like to extend my heartful thanks to my family and my friends for their unconditional love and support. They all have been a constant source of motivation, encouragement and inspiration.

List of Contents

Abstract	i
List of Abbreviations	iii
List of Tables	vi
List of Figures	vii
Chapter I. Introduction and Aim of the Work	1
Chapter II. Review of Literature	7
Breast Cancer	7
Breast Cancer Classification	7
• Autophagy	15
Molecular Mechanism of Autophagy	20
• Cell Signaling-Regulated Autophagy Process-	25
Autophagy and m-TOR Signaling	23
Autophagy and Cancer	37
• Doxorubicin	42
• Modes of Action of Doxorubicin as an Anticancer Therapeutic Agent	45
Aloe Plant	52
• Aloin	54
Chapter III. Materials and Methods	63
A-Materials	63
• Cell Lines	63
Compounds used	64
Preparation of Doxorubicin and Aloin	64
Cell lines Propagation	65
B-Methods	66

I. Cytotoxicity Studies	66
1- In vitro Cell Proliferation Assay	66
2- Clonogenic Assay	72
II. Monitoring of Autophagy Formation	76
1-Transmission Electron Microscopy	76
2- Detection of Acid Vesicular Organelles (AVOs) with Acridine Orange by Confocal Fluorescence Microcopy	81
3- Quantification of Acidic Vesicular Organelles (AVOs) using Fluorescence Activated Cell Sorting (FACS)	83
4- Protein Expression of Some Autophagy Markers by Western Blot	85
Satistical Analysis	98
Chapter IV. Results	99
Chapter V. Discussion	158
• Conclusions	199
• Recommendations	201
• Summary	202
• References	208

Role of Autophagy in the Antitumor Activity of Aloin in Breast Cancer Cells

Asmaa Kamal Mansour Mohamed Elgendy ABSTRACT

Aloin is a natural bioactive anthraquinone extracted from Aloe sp. and has the potential of tumor regression by inhibition of cell proliferation and induction of cell apoptosis in different human cancer cell lines. The ability of cancer cells to evade apoptosis, which often limits the efficacy and accounts for the resistance to chemotherapy, strives the search of autophagy process as an alternative target to promote cell death. The present study was undertaken to verify the autophagy process as a probable mechanism for the antitumor activity of aloin in 2 types of breast cancer cell lines; estrogen receptor positive (T47D) and triple negative (MDA-MB231), compared to anthraquinone analog, doxorubicin. the Initially, cytotoxicity of increasing concentrations of aloin and doxorubicin were assessed using MTT and clonogenic assays at 2 exposure periods (24 and 72h) to determine the half maximal inhibitory concentration (IC₅₀) of aloin and doxorubicin in both types of cell lines. The formation of autophagy process in the treated tumor cells was initially detected by using transmission electron microscope (TEM). Emphasis of autophagy process was then achieved by monitoring the formation of acidic vesicular organelles (AVOs) qualitatively by confocal fluorescence microscope, and quantitatively by fluorescence activated cell sorting (FACS). Finally, the protein expression levels of some

autophagy-related genes were determined by Western blotting. Results obtained from this study revealed that aloin inhibited the cell growth of both T47D and MDA-MB231 cells, with a more pronounced effect in the 72 exposure regimen. TEM of tumor cells treated with IC₅₀ of aloin revealed the presence of autophagosomes, as early and autolysophagosomes, as late autophagic compartments. The autophagic activity of aloin was then emphasized by the accumulation of acidic vesicular organelles (AVOs) in the treated tumor cells and the up-regulation in the protein expression of some autophagy-related genes, such microtubule-associated proteins 1A/1B light chain 3B (LC3B II), beclin1, phosphorylated AKT (p-PKB), and in contrast down-regulation of p62 and phosphorylated mammalian target of rapamycin kinase (p-mTOR). These findings concluded that autophagy is regarded as one of the modes of the cytotoxic action of aloin in T47D and MDA-MB231 breast cancer cells via modulating mTOR cell signaling pathway.

Keywords: Aloin, Doxorubicin, Breast cancer cells, Autophagy, Transmission electron microscopy, Confocal fluorescence microscopy, Flow cytometry and Western blotting.

List of Abbreviations

AVOs	Acid Vesicular Organelles
AMPK	Adenosine monophosphate-activated
AMICK	kinase
AL	Aloin
ATCC	American Type Culture Collection
AO	Acridne orange
ATG	Autophagy related genes
BRCA	Breast cancer gene
ECM	Extracellular matrix
CMA	Chaperone-mediated autophagy
JNK	C-jun N-terminal kinase
CLSM	Confocal laser scanning microscopy
DARK	Death-associated protein kinase 1
DMSO	Dimethyl sulfoxide
Dox	Doxorubicin
ER	Estrogen receptor
ELISA	Enzyme-linked immunosorbent assay
HER2	Human epidermal growth factor receptor 2
EREs	Estrogen receptor elements
4EBP1	Eukaryotic initiation factor 4E binding
4LDI I	protein
ERK	Extracellular signal-regulated kinase
FACS	Fluorescence activated cell sorting
FBS	Fetal bovine serum
FOXO1	Forkhead box O protein O1
GFs	Growth factors

List of Abbreviations (Cont.)

NSCLC	Human non-small cell lung carcinoma
Hsc70	Heat shock protein
HUVECs	Human umbilical vascular endothelial cells
IC50	Inhibitory concentration that kill 50%
ICF	Inhibition of colony formation
IRS1	Insulin receptor substrate 1
IRS2	Insulin receptor substrate 2
LC3B	Microtubule-associated proteins 1A/1B light chain 3B
mTORC1	Mammalian target of rapamycin complex1
MTD	Maximum tolerated dose
MDR	Multidrug resistance
MAPK	mitogen-activated protein kinase
MTT	3-(4, 5-Dimethylthiazol-2-yl)-2, 5-
WIII	diphenyltetrazolium bromide
NRF2	Nuclear factor erythroid-2–like 2
SQSTM1/p62	Sequestosome-1 (ubiquitin-binding protein p62)
PDK1	Pyruvate dehydrogenase kinase 1
P-gp	P-glycoprotein
PCD	Programed cell death
PTEN	Phosphatase and tensin homolog
PBS	Phosphate-buffered saline
PIP3	Phosphatidylinositol 3, 4, 5 trisphosphate
PI3K	Phosphoinositol-3-kinase
PARP	Poly ADP-ribose polymerase
PR	Progesterone receptor
PKB/AKT	Protein kinase B

List of Abbreviations (Cont.)

	` ,
ROS	Reactive oxygen species
RTKs	Receptor tyrosine kinases
RPMI	Complete RPMI-1640 medium
siRNA	small interfering RNA
SPF	S-phase fraction
STAT	Signal transducers and activators of
SIAI	transcription
TNF-α	Tumor necrosis factor alpha
Topo II	Topoisomerase II
TEM	Transmission Electron Microscopy
TNBC	Triple-negative breast cancers
TSC	Tuberous sclerosis complex
ULK1	51-like serine threonine kinase complex
WHO	World health organization

List of Tables

Table No.	Title	Page
4.1	Effect of 24h exposure regimen to multiple concentrations of aloin on the percentage of cell viability of T47D cells.	101
4.2	Effect of 72h exposure regimen to multiple concentrations of aloin and doxorubicin on the percentage of cell viability of T47D cells.	103
4.3	Effect of 24h exposure regimen to multiple concentrations of aloin and doxorubicin on the percentage of cell viability of MDA-MB 231cells.	107
4.4	Effect of 72h exposure regimen to multiple concentrations of aloin and doxorubicin on the percentage of cell viability of MDA-MB231cells.	109
4.5	<i>In vitro</i> sensitivity of T47D cells to aloin and doxorubicin.	117
4.6	<i>In vitro</i> sensitivity of MDA-MB231 cells to aloin and doxorubicin.	119
4.7	Flow cytometeric analysis of acridine orange positive T47D cells (%).	137
4.8	Flow cytometric analysis of acridine orange positive MDA- MB231 cells (%) after treatment with aloin or doxorubicin for 72h.	140

List of Figures

Fig. No.	Title	Page
2.1	ERα acting as a transcription factor	13
2.2	Description of the process of autophagy	15
2.3	Different types of autophagy	17
2.4	Autophagy substrates (non-selective or selective forms of autophagy)	19
2.5	The autophagy process	24
2.6	Molecular composition and upstream regulators of mTORC1 and mTORC2	27
2.7	Regulation of ULK1 complex by	29
2.8	Regulation of various steps of autophagy by mTORC1	30
2.9	Autophagy is induced by deprivation of nutrients, hormones, and energy	35
2.10	Autophagy regulation in response to stress	36
2.11	The two facets of autophagy in cancer	42
2.12	Structure of doxorubicin	43
2.13	The potential mechanisms of doxorubicin- mediated cell death	45
2.14	Structure of the doxorubicin-DNA	47
2.15	Proposed mechanisms of ROS formation by anthracyclines	50
2.16	A cross section illustration of Aloe leaf	54
2.17	Structure of aloin A, aloin B and aloeemodin	55
3.1	Standard curve for bovine serum albumin	89