

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY

# EVALUATION OF A NEW MODEL FOR DRYING SOME TYPES OF MEDICINAL AND AROMATIC PLANTS

By

## MOHAMED REFAAT ARAFA ABUTALEB

B.Sc.Agric. Sci. (Food Sci. Techn.), Fac. of Agric., Ain Shams Univ., 2011

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

MASTER SCIENCES
in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

## **Approval Sheet**

# EVALUATION OF A NEW MODEL FOR DRYING SOME TYPES OF MEDICINAL AND AROMATIC PLANTS

By

#### MOHAMED REFAAT ARAFA ABUTALEB

B.Sc.Agric. Sci. (Food Sci. Techn.), Fac. of Agric., Ain Shams Univ., 2011

This thesis for the M.Sc. degree has been approved by:

Dr. Mousa Abdou Mohamed Salem
Professor of Food Industries, Faculty of Agriculture, Tanta University.

Dr. Hany Idrees Khalil
Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University.

Dr. Alaa Abdelrashid Mohamed
Professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University.

Dr. Yosry Ahmed Abdeldaim
Professor Emeritus of Food Science and Technology, Faculty of

**Date of examination:** 29 / 05 / 2021

Agriculture, Ain Shams University.

# EVALUATION OF A NEW MODEL FOR DRYING SOME TYPES OF MEDICINAL AND AROMATIC PLANTS

By

## MOHAMED REFAAT ARAFA ABUTALEB

B.Sc.Agric. Sci. (Food Sci. Techn.), Fac. of Agric., Ain Shams Univ., 2011

### **Under the supervision of:**

## Dr. Yosry Ahmed Abdeldaim

Prof. Emeritus of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, (Principal Supervisor).

### Dr. Alaa Abdelrashid Mohamed

Professor of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University

# Dr. Tamer Ibrahim Mohamed Ragab

Associate Prof. of Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre.

#### **ABSTRACT**

Mohamed Refaat Arafa Abutaleb, Evaluation of a New Model for Drying Some Types of Medicinal and Aromatic Plants. Unpublished Master of Agric. Science Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2021.

Egyptian medicinal and aromatic plants (MAPs) sector suffers from poor drying conditions of the product in terms of quality and safety standards, lack of professional advisory services, in addition to a high undeveloped value chain. Four designs were established in this study and focused on three different methods for plant drying, and the physical properties were measured for each design. The results of the 8/9/2 (B) design of the solar-assisted stack dryer were a masterpiece and promising for drying the selected plants. It was highly effective in reducing the moisture by the rate of (9.6 %) in chamomile, (9.1 %) in both mint, and moringa. The air flow average was 0.79 m/s for the three plants. The results of essential oil extraction in 8/9/2 (B) design of the solar-assisted stack dryer for chamomile and mint showed that the increased yield of essential oil extraction by (30 %) compared with traditional drying methods (control). The results for antimicrobial activity of chamomile oil sample and the quality attributes of the 8/9/2 (B) stack dryer was better than the control, all the dried samples showed optimum color, odor, flavor, taste, and aftertaste values. The drying process caused a sharp decrease in the microbial load for all the dried chamomile, mint, and moringa samples as compared to the control one. The antiviral activity for chamomile oil sample 8/9/2 (B) design generally seemed better, especially with (35.7%) of virus inhibition compared with control which was (14.2%). The study method was promises and distinctive because it increases the drying rate, maintains chemical structure, and it had a high biological effect compared with the control.

**Key words:** Chamomile, Mint, Moringa, Solar-assisted stack dryer, Biological activity and Sensory evaluation.

#### **DEDICATION**

I dedicate my dissertation work to my family and many friends. A special feeling of gratitude to my loving parents, **REEFAT** and **EBTISAM** whose words of encouragement and push for tenacity ring in my ears. My deepest thanks to my wife **ESRAA** for her patience, understanding, encouragement and moral support to give me the chance to complete this work, she never left my side and was very special.

I also dedicate this dissertation to my sisters **Enas** and **Reham**, many friends, and my work team who have supported me throughout the process. I will always appreciate all they have done, especially **Dr. Amgad** for helping me develop my technology skills, and helping me to master the leader dots.

I dedicate this work and give special thanks to my best friends **Mohamed I.**, **Ahmed M.**, **Ibrahim M.**, and my wonderful son **Selim**, and my daughter **Eline** for being there for me throughout the entire master program. All of you have been my best cheerleaders.

#### ACKNOWLEDGMENT

First, I would like to thank "**Almighty Allah**" for giving us strength, patience, and a sense of direction while doing this research work. Without Allah's blessings, this work could not be done.

I would like to express my sincere gratitude and thanks to **Prof. Dr. Yosry Ahmed Abdeldaim**, Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University, for his continuous guidance, motivation, encouragement, and whole supervision which made this work successful.

Deepest thanks and sincere appreciation to **Prof. Dr. Alaa Abdelrashid Mohamed**, Prof. of Food Sci. and Tech., Faculty of Agric., Ain-Shams Univ., for his support, guidance, as well as giving me extraordinary experiences throughout the work.

I would like to express my sincere gratitude to **Dr. Tamer Ibrahim Mohamed Ragab**, Associate Prof. of Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre, for his kind supervision, advice, continuous valuable, fruitful criticism and suggestion, and encouragement throughout this work.

Great thanks to all team members and colleagues of the Food Science Department, Faculty of Agric., Ain-Shams University for their help. Also, I would like to express my great thanks and indebtedness to **Prof. Dr. Mohamed Ahmed Ali**, and team members of the Center of Scientific Excellence for Influenza Viruses (CSEIV), National Research Centre.

## **CONTENTS**

|                               |                                                    | Page |
|-------------------------------|----------------------------------------------------|------|
| LIST OF                       | TABLES                                             | IV   |
| LIST OF FIGURES ABBREVIATIONS |                                                    | V    |
|                               |                                                    | VI   |
| INTROD                        | INTRODUCTION                                       |      |
| REVIEW OF LITERATURE          |                                                    | 6    |
| 2.1                           | Chamomile (Matricaria Chamomilla)                  | 6    |
| 2.2                           | Mint (Mentha)                                      | 11   |
| 2.3                           | Moringa (Moringa oleifera)                         | 13   |
| 2.4                           | Food quality and safety                            | 15   |
| 2.5                           | Solar Energy                                       | 16   |
| 2.6                           | Flat-Plate Solar Collector                         | 19   |
| 2.7                           | Principles of The Drying Process                   | 19   |
| 2.8                           | Solar Drying Systems                               | 20   |
| 2.9                           | Open sun dryers                                    | 21   |
| 2.10                          | Direct solar dryers                                | 22   |
| 2.11                          | Indirect solar dryers                              | 22   |
| 2.12                          | Mixed-mode solar dryers                            | 23   |
| 2.13                          | Solar Drying of Medicinal and Aromatic Plants      | 24   |
| 2.14                          | Overview of Literature Review                      | 32   |
| MATERI                        | AL AND METHODS                                     | 33   |
| 3.1                           | MATERIALS:                                         | 33   |
| 3.1.1                         | Chamomile (Matricaria Chamomilla)                  | 33   |
| 3.1.2                         | Mint (Mentha)                                      | 33   |
| 3.1.3                         | Moringa (Moringa oleifera)                         | 33   |
| 3.2                           | Equipment's                                        | 33   |
| 3.3                           | Methods                                            | 34   |
| 3.3.1                         | Stack dryers for small-scale map growers in Egypt. | 34   |
| 3.3.1.1                       | Basic design (Design 1)                            | 34   |
| 3.3.1.2                       | Design of solar-assisted stack dryer               | 35   |

|           |                                                       | Page |
|-----------|-------------------------------------------------------|------|
| 3.3.1.2.1 | 1/9/2 design of solar-assisted stack dryer (Design 2) | 35   |
| 3.3.1.2.2 | 5/5/2 design of solar-assisted stack dryer (Design 3) | 36   |
| 3.3.1.2.3 | 8/9/2 design of solar-assisted stack dryer (Design 4) | 37   |
| 3.3.2     | Operation time and energy consumption                 | 38   |
| 3.3.3     | Physico-chemical measurements                         | 39   |
| 3.3.4     | Estimation of total chlorophyll in fresh and dried    | 39   |
|           | plants                                                |      |
| 3.3.5     | Sensory evaluation                                    | 39   |
| 3.3.6     | Essential oil extraction and determination            | 40   |
| 3.3.6.1   | Essential oil chemical composition by GS-MS           | 40   |
|           | analysis                                              |      |
| 3.3.7     | Microbiological analysis                              | 41   |
| 3.3.7.1   | Total plate count (TPC)                               | 41   |
| 3.3.7.2   | Disc-diffusion assay                                  | 41   |
| 3.3.8     | Antiviral activity                                    | 42   |
| 3.3.8.1   | MTT cytotoxicity assay (TC50)                         | 42   |
| 3.3.8.2   | Plaque reduction assay                                | 43   |
| 3.3.8.3   | Mechanism of virus inhibition                         | 43   |
| 3.3.8.4   | Viral replication                                     | 43   |
| 3.3.8.5   | Viral adsorption                                      | 44   |
| 3.3.8.6   | Virucidal                                             | 44   |
| 3.3.9     | Statistical analysis:                                 | 45   |
| RESULTS   | AND DISCUSSION                                        | 46   |
| 4.1       | Stack dryers for small-scale map growers in Egypt     | 46   |
| 4.1.1     | Basic design (Design 1)                               | 46   |
| 4.1.2     | 1/9/2 Solar-assisted design (Design 2)                | 46   |
| 4.1.3     | 5/5/2 solar-assisted design (Design 3)                | 48   |
| 4.1.4     | 8/9/2 (A&B) solar-assisted design (Design 4)          | 49   |
| 4.2       | Chemical analysis                                     | 50   |
| 4.2.1     | Moisture content                                      | 50   |
| 4.2.1.1   | Moisture content of chamomile                         | 50   |

|                |                                                  | Page |
|----------------|--------------------------------------------------|------|
| 4.2.1.2        | Moisture content of mint                         | 52   |
| 4.2.1.3        | Moisture content of moringa                      | 54   |
| 4.2.1.4        | Moisture content statistical analysis            | 56   |
| 4.2.2          | Total chlorophyll in fresh and dried plants      | 58   |
| 4.3            | Microbiological activity                         | 58   |
| 4.3.1          | Total plate count (TPC)                          | 58   |
| 4.4            | Sensory evaluation                               | 59   |
| 4.4.1          | Sensory evaluation of chamomile                  | 59   |
| 4.4.2          | Sensory evaluation of mint samples               | 60   |
| 4.4.3          | Sensory evaluation of moringa samples            | 61   |
| 4.4.4          | Chamomile, mint, and moringa attributes average  | 62   |
| 4.4.5          | Sensory evaluation statistical analysis          | 63   |
| 4.5            | Essential oils                                   | 65   |
| 4.5.1          | Essential oils extraction of the tested samples  | 65   |
| 4.5.2          | Chemical constituents of chamomile essential oil | 66   |
| 4.6            | Anti-microbiological activity                    | 69   |
| 4.6.1          | Disc-diffusion assay                             | 69   |
| 4.6.2          | Antiviral activity                               | 69   |
| 4.6.2.1        | MTT Cytotoxicity assay                           | 69   |
| SUMMAR         | RY AND CONCLISION                                | 72   |
| REFERENCES     |                                                  | 82   |
| ARABIC SUMMARY |                                                  |      |

## LIST OF TABLES

| Table No. | ]                                                                                                                                                                                              | Page |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1         | Air properties measurements of 1/9/2 design of solar-assisted stack dryer                                                                                                                      | 47   |
| 2         | Air properties measurements of $5/5/2$ design of solar-assisted stack dryer                                                                                                                    | 48   |
| 3         | Air properties measurements of 8/9/2 (A&B) design of solar-assisted stack dryer                                                                                                                | 49   |
| 4         | Moisture content (%) of chamomile tested samples                                                                                                                                               | 51   |
| 5         | Moisture content (%) of mint tested samples                                                                                                                                                    | 53   |
| 6         | Moisture content (%) of moringa tested samples                                                                                                                                                 | 55   |
| 7         | Moisture interaction statistical analysis                                                                                                                                                      | 57   |
| 8         | Significant ranges between designs and moisture content                                                                                                                                        | 57   |
| 9         | Significant ranges between plants and moisture content                                                                                                                                         | 57   |
| 10        | Total chlorophyll contents in tested samples (mg/100g)                                                                                                                                         | 58   |
| 11        | Total bacterial count of the tested samples                                                                                                                                                    | 59   |
| 12        | Sensory evaluation interaction statistical analysis                                                                                                                                            | 64   |
| 13        | Significant ranges between designs and Sensory evaluation average.                                                                                                                             | 64   |
| 14        | Significant ranges between plants and sensory evaluation averages                                                                                                                              | 64   |
| 15        | Sensory evaluation interaction statistical analysis, significant ranges between designs and sensory evaluation average, and significant ranges between plants and sensory evaluation averages. | 65   |
| 16        | Yield of essential oil percentage (ml %) extracted by Hydro-distillation extraction (HD).                                                                                                      | 66   |
| 17        | Chemical composition of chamomile essential oil and its control oil                                                                                                                            | 68   |
| 18        | Antiviral activity measured using a plaque reduction assay against influenza virus (A/chicken/Egypt/B13825A/2017) H5N1                                                                         | 71   |

## LIST OF FIGURES

| Fig. No. |                                                                                   | Page |
|----------|-----------------------------------------------------------------------------------|------|
| 1        | Basic design (Design 1)                                                           | 35   |
| 2        | 1/9/2 design of solar-assisted stack dryer (Design 2)                             | 36   |
| 3        | 5/5/2 design of solar-assisted stack dryer (Design 3)                             | 37   |
| 4        | 8/9/2 design of solar-assisted stack dryer (Design 4)                             | 38   |
| 5        | Moisture Content of Chamomile tested samples                                      | 52   |
| 6        | Moisture Content of mint tested samples                                           | 54   |
| 7        | Moisture Content of moringa tested samples                                        | 56   |
| 8        | Conclusion of panelist's results for chamomile attributes average                 | 60   |
| 9        | Conclusion of panelist's results for mint attributes average                      | 61   |
| 10       | Conclusion of panelist's results for moringa attributes average                   | 62   |
| 11       | Average of sensory evaluation results for chamomile, mint, and moringa attributes | 63   |
| 12       | Yield of essential oil extraction                                                 | 66   |
| 13       | GC–MS chromatogram of chamomile EO 8/9/2 (B) design and control                   | 69   |
| 14       | MTT Cytotoxicity assay for 8/9/2 (B) dried design and control of chamomile sample | 70   |

#### LIST OF ABBREVIATIONS

MAP Medicinal and aromatic plants

EOs Essential oils

Basic Design 1
1/9/2 Design 2
5/5/2 Design 3
8/9/2 Design 4

MDCK Madin Darby Canine Kidney

DMEM Dulbecco's Modified Eagle's Medium

FAITC Food and Agro-Industries Technology Center

FAO Food and Agriculture Organization FTRI Food Technology Research Institute

S Second

ssp Subspecies

Str. Streptococcus

TPC Total Plate Count

TS Total Solids

P Pressure

T Temperature

Q Air flow pa Pascal

V Air velocity

GC-MS Gas chromatography-mass spectrometry

ATCC American Type Culture Collection

TCID50 Median Tissue Culture Infectious Dose

GRAS Generally Recognized As Safe

FAODA Fayoum Association for the Development of Organic

Agriculture

NGOs Non-governmental organizations