

قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ الْعَلِيمُ الْحَكِيمُ

صَّالِ فَاللَّهُ الْعَظَمِينَ،

سورة البقرة أية ٣٢

Tuberculous patients in Respiratory Intensive Care Unit: Characteristics and Outcome

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

 $\mathcal{B}y$

Mohamed Mohamed Nabil Ibrahim M.B.B. Ch

Under Supervision of

Prof. Gehan Mohamed El-Assal

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

A. Prof. Eman Badawy Abdel Fattah

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgement

First of all thanks for Allah Most Gracious and Most Merciful for everything.

I would like to express my gratitude and appreciation to Prof. Dr. Gehan Mohamed El-Assal professor of chest diseases A. Prof. Eman Badawy Abdel Fattah; Assistant Professor of chest diseases for their kind acceptance to supervise this piece of work, for their patience, valuable guidance and precious time.

I also would like to express my sincere gratitude to my family for their support in helping me to complete this research. I could not have done this without them.

Mohamed Mohamed Nabíl

مرضى الدرن فى وحدة الرعابة المركزة للجماز التنفسي : محددات ونتائج رسالة

توطئة للحصول على درجة الماجستير في الامراض الصدرية والتدرن

مقدمة من الحليب / محمد محمد نيبل

بكالوريوس الطب والجراحة

تحت اشراف أ.د/ جېمان محمد العسال

استاذ طب الامراض الصدرية كلية الطب ،جامعة عين شمس

أ.د.م / ايمان بدوى عبدالفتاح

استاذ مساعد طب الامراض الصدرية كلية الطب ،جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٢٠

List of Contents

Title	Page No.
List of figures	i
List of tables	iii
Abbreviations	v
Introduction	1
Aim of the work	3
Review of the literature	4
Causes and indications of ICU admission due to pulmonary	4
tuberculosis (different clinical presentations)	
Management of pulmonary tuberculosis in ICU (diagnosis	
and treatment)	19
Outcome of the patients	44
Patients and methods	48
Results	53
Discussion	89
Summary and conclusion	95
Recommendations	99
References	100
Arabic summary	Í

Figures

Figure (1)	Acute Physiology and Chronic Health	13	
_	Evaluation II (APACHE II) score		
Figure (2)	Chest radiograph showing a right-upper-lobe		
	infiltrate and a cavitary with an air-fluid level		
	in a patient with active tuberculosis		
Figure (3)	Chest radiograph showing bilateral miliary		
	(millet-sized) infiltrates in a child		
Figure (4)	description of age of all studied patients	54	
Figure (5)	description of sex of all studied patients	54	
Figure (6)	description of race of all studied patients	55	
Figure (7)	description of smoking of all studied patients	55	
Figure (8)	description of type of smoking in all studied	56	
	patients		
Figure (9)	description of drug addiction of all studied	56	
	patients		
Figure (10)	description of co-morbidities of all studied	58	
	patients		
Figure (11)	description of past history of all studied	60	
	patients		
Figure (12)	description of Diagnosis of all studied patients	60	
Figure (13)	description of case definition of all studied	61	
	patients		
Figure (14)	description of cause of ICU admission in all	63	
	studied patients		
Figure (15)	description of GCS admission in all studied	63	
	patients		
Figure (16)	description of APACHE score in all studied	64	
	patients		
Figure (17)	description of ABG admission in all studied	64	
	patients		
Figure (18)	description of Hb of all studied patients	66	
Figure (19)	description of TLC of all studied patients	66	
Figure (20)	description of PLT of all studied patients	67	
Figure (21)	description of Na of all studied patients	67	
Figure (22)	description of K of all studied patients	68	
Figure (23)	description of SGOT & SGPT of all studied		
	patients	68	
Figure (24)	description of glucose of all studied patients	69	

I

Figures

Figure (25)	description of chest X-ray of all studied patients	71
Figure (26)	description of Complications of all studied patients	73
Figure (27)	description of Complications of all studied patients	73
Figure (28)	description of ICU stay of all studied patients	74
Figure (29)	description of outcome of all studied patients	75
Figure (30)	Correlation study between outcome and APACHE score in studied patients	80
Figure (31)	Correlation study between outcome and ABG in studied patients	80
Figure (32)	Correlation study between outcome and MV in studied patients	83
Figure (33)	Correlation study between outcome and duration of MV in studied patients	83
Figure (34)	Correlation study between outcome and Complications	85
Figure (35)	Correlation study between outcome and ICU stay	86
Figure (36)	ROC curve between died patients and discharged patients as regard ICU stay	87

Tables

Table (1)	Other potential reasons for admission of a patient with tuberculosis to an ICU.		
Table (2)	The three main objectives of TB treatment	38	
Table (3)	First-line anti-tuberculous drugs	40	
Table (4)	The mode of action and side effects of first-line anti-	40	
	tuberculous drugs		
Table (5)	Different patient categories and the corresponding	41	
	treatment category used to treat them		
Table (6)	Antimycobacterial drugs recommended for the	42	
	treatment of MDR/RR-TB		
Table (7)	The WHO 2018 grouping of medicines recommended	43	
	for use in longer MDR-TB regimens		
Table (8)	The definitions of different expected outcomes.	44	
Table (9)	description of demographic data of all studied patients	53	
Table (10)	description of co-morbidities of all studied patients	57	
Table (11)	description of past history, Diagnosis & case	59	
	definition of all studied patients		
Table (12)	description of ICU data of all studied patients	62	
Table (13)	description of laboratory data of all studied patients	65	
Table (14)	description of other data of all studied patients	70	
Table (15)	description of Complications of all studied patients		
Table (16)	description of ICU stay and outcome of all studied	74	
E 11 (15)	patients	5 .	
Table (17)	Correlation study between outcome and demographic	76	
T 11 (10)	data		
Table (18)	Correlation study between outcome and co-	77	
5 11 (10)	morbidities		
Table (19)	Correlation study between outcome and past history,	78	
F 11 (20)	Diagnosis & case definition		
Table (20)	Correlation study between outcome and ICU data in	79	
	studied patients	0.4	
Table (21)	Correlation study between outcome and laboratory	81	
	data		
FD 11 (22)		02	
Table (22)	Correlation study between outcome and other data	82	
Table (23)	Correlation study between outcome and	84	

Tables

	Complications		
Table (24)	Correlation study between outcome and ICU stay		
Table (25)	Diagnostic performance of ICU stay in discrimination		
	of died patients and discharged patients		
Table (26)	Multivariate analysis to detect factors affecting	88	
	mortality		

Abbreviations

ADC	A . ' 111 1
ABG	Arterial blood gases
ADA	Adenosine deaminase
AFB	Acid fast bacillus
AIDS	Acquired immunodeficiency syndrome
APACHE II score	Acute Physiology and Chronic Health Evaluation
	II scores
ARDS	Acute respiratory distress syndrome
BAL	broncho alveolar lavage
BCG	Bacille Calmette–Guerin
CAP	Community acquired pneumonia
Cat I	Category I
Cat II	Category II
CD4	cluster of differentiation 4
CDC	Center for disease control and prevention
CI	confidence interval
CMI	Cell mediated immunity
CNS	Central nervous system
COPD	Chronic Obstructive Pulmonary Disease
CPD	Chronic pulmonary diseases
CT	Computed tomography
CX-R	chest X-ray
DIC	Disseminated intravascular coagulation
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
DR-TB	Drug resistant tuberculosis
DST	Drug sensitivity testing
DTH	Delayed-type hypersensitivity
ECMO	Extracorporeal membrane oxygenation
ELISA	Enzyme-linked immunosorbent assay
FM	Florescent microscope
GCS	Glascow coma scale
Gm	Gram
Hb	Heamoglobin
HEPA	High-efficiency particulate air
HIV	Human immunodeficiency virus
HLA	Human leukocyte antigen
HRCT	High resolution computed tomography
HRZES	Isoniazid, Rifampicin, Pyrazinamide, Ethambutol And, Streptomycin

Abbreviations

ICH	T , '
ICU	Intensive care unit
IFN-γ	Interferon gamma
IGRA	Interferon gamma release assay
INR	International normalized ratio
IRB	Institutional Review Board
IV	Intravenous
K	Potassium
Kpa	Pascal
LMIC	Low and middle-income countries
LTBI	Latent tuberculosis infection
MDRTB	Multi drug resistant tuberculosis
Mg	Milligram
MGIT	Mycobacterial Growth Indicator Tube
MmHg	millimetre of mercury
MOF	Multi organ failure
MTB	Mycobacterium tuberculosis
MTB/RIF	Mycobacterium / rifampicin
MV	Mechanical ventilation
Na	Sodium
NAATs	Nucleic acid amplification tests
NAATS	Nucleic acid amplification testes
NIPSV	Noninvasive pressure support ventilation
NIV	Noninvasive ventilation
Non-TB	Non Tuberculosis mycobacterium
NPV	Negative predictive value
OR	Odds Ratio
PA	Posterior – anterior
PAS	Para-aminosalicylic acid
PLT	Platelets
PPD	Purified protein derivative
PPV	Positive predictive value
PT	Prothrombin time
PTT	Partial thromboplastin time
QFT-GIT	QuantiFERON®-TB Gold In-Tube
RD-1	region of difference-1
RICU	Respiratory ICU
RNA	Ribonucleic acid
RR-TB	Rifampicin-resistant tuberculosis
SD	standard deviation
SDGS	Sustainable Development Goals
SGOT	Serum glutamic-oxaloacetic transaminase
L	

Abbreviations

SGPT	Serum glutamic pyruvic transaminase
SLIDs	Second-line injectable drugs
SPSS	Statistical Package the Social Sciences
SR	Standard error
TB	Tuberculosis
TB/HIV	Tuberculosis / Human immunodeficiency virus
TLC	Total leucocytic count
TST	Tuberculin skin test
VAP	Ventilator-associated-pneumonia
WHO	World health organization
XDR	Extended drug resistant tuberculosis
Xpert MTB/ RIF	Xpert Mycobacterium tuberculosis/rifampicin
	assay
ZN	Ziehl-Neelsen stain

INTRODUCTION

Introduction

Tuberculosis (TB) remains a major health problem worldwide. TB affects 10 million people each year and is one of the top ten causes of death for the past 5 years. In 2015, WHO estimated 1.4 million TB-related deaths with an addition of 0.4 million deaths resulting from TB/HIV co-infection. Multidrug-resistant TB (MDRTB) (clinically defined as TB resistance to at least isoniazid and rifampicin) is a high burden TB variant which is progressively emerging due to improper management of TB (e.g. lack of adherence to medications), or person-to-person transmission (**Duro RP et al, 2017**). WHO recently reported 480,000 new cases of MDRTB in addition to 100,000 new cases of rifampicin-resistant TB (RR-TB) who are at risk to develop MDRTB (**WHO, 2017**).

In 1990, the WHO estimated the prevalence and incidence of tuberculosis in Egypt to be 82/100,000 and 35/100.00, respectively. Effective diagnosis and treatment reduced TB prevalence and incidence in 2015 to 27 /100,000 and 15 / 100.00 cases population (a half of the 1990 estimate) (**Egyptian Guidelines**, 2017).

TB is an air-born infectious disease caused by the bacillus Mycobacterium tuberculosis. It typically affects the lungs (pulmonary TB) but can also affect other sites (extra-pulmonary TB). The probability of developing TB disease is much higher among people infected with HIV, and also higher among people affected by risk factors such as under-nutrition, diabetes, smoking and alcohol consumption (WHO, 2017).

The classic symptoms of active TB are chronic cough with blood containing sputum, fever, night sweats, and weight loss. Diagnosis of TB is generally based on chest-x ray finding, sputum smear microscopy for acid fast bacilli, and TB sputum culture (Löwenstein–Jensen medium and BACTEC MGIT TB system). in addition to new high tech-based diagnostic strategies of which, GeneXpert is the most powerful breakthrough. The most common clinical variants of TB infection are active pulmonary, latent TB, extra-pulmonary TB (e.g., *Miliary* TB, TB meningitis), multi-drug resistant TB, (MDRTB), TB-HIV co-infection (Lewinsohn DM et al, 2017).

Early diagnosis and treatment are crucial milestones for TB control, since delayed diagnosis and/or treatment increases mortality rates and evolve aggressive clinical forms of the disease. Moreover, late diagnosis and treatment contribute to disease dissemination with dramatic public health implications (**Lewinsohn DM et al, 2017**).

Severe forms of TB usually presents with respiratory failure and requires admission at Intensive Care Unit (ICU). Despite the availability of efective therapies, mortality rates remain between 15.5 and 65.9% (Duro RP et al, 2017). Previous studies reported multiple risk factors of TB mortality in ICU. The most frequent factors are: old age (Kim YJet al ,2008), respiratory failure/need for mechanical ventilation (Erbes R et al ,2006), co-morbidities (e.g., HIV, diabetes) (Dos Santos RP et al, 2011), acute renal failure (Erbes R et al, 2006), sepsis (Loh W et al, 2016), and other infections (e.g., ventilator associated pneumonia) (Silva DR et al, 2012).