سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

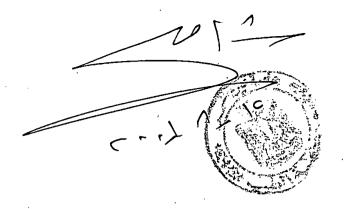
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا


سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

B. 10 VE-

The Value of Interferon-Gamma Estimation in the Cord Blood in the **Prediction of Allergic Disorders**

مزئ سرسی تن ۱۷ س A Thesis Submitted in the Partial Fulfillment of the MD Degree in Pediatrics Bv

Ossama Yassin Abdel-Wahab MS in Pediatrics, Ain Shams University

Under the Supervision of

Prof./ Yehia Mohamed El-Gamal

Chairman of the Pediatric Departments Head of the Pediatric Allergy and Immunology Unit Ain Shams University

Prof./ Mona Mohamed Rafik

Professor of Clinical Pathology Ain Shams University

Prof./ Elham Mohamed Hossny

Professor of Pediatrics Pediatric Allergy and Immunology Unit Ain Shams University

Dr./ Manal Zaghloul Mahran

Assistant Professor of Clinical Pathology Ain Shams University

> Faculty of Medicine Ain Shams University 2001

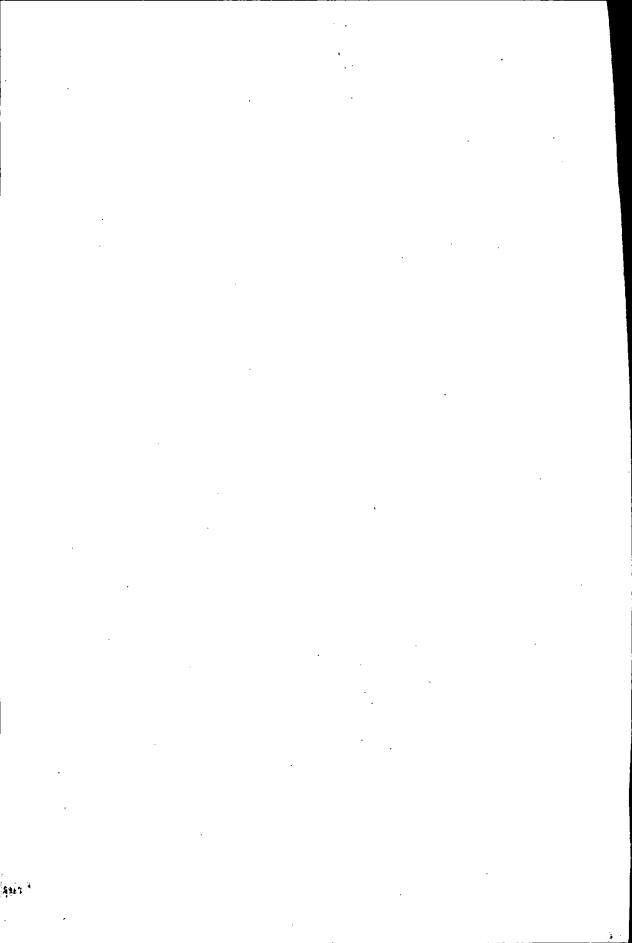
Acknowledgments

الممد لله ربع العالمين

I would like to express my endless gratitude and appreciation to **Prof. Yehia El-Gamal**, Chairman of the Pediatric Department and Head of the Pediatric Allergy and Immunology Unit of Ain Shams University, for giving me the opportunity to work under his meticulous supervision and for everything he kindly offered me eversince I started my training in allergy and immunology. I owe him everything I learned in pediatrics and in medical ethics.

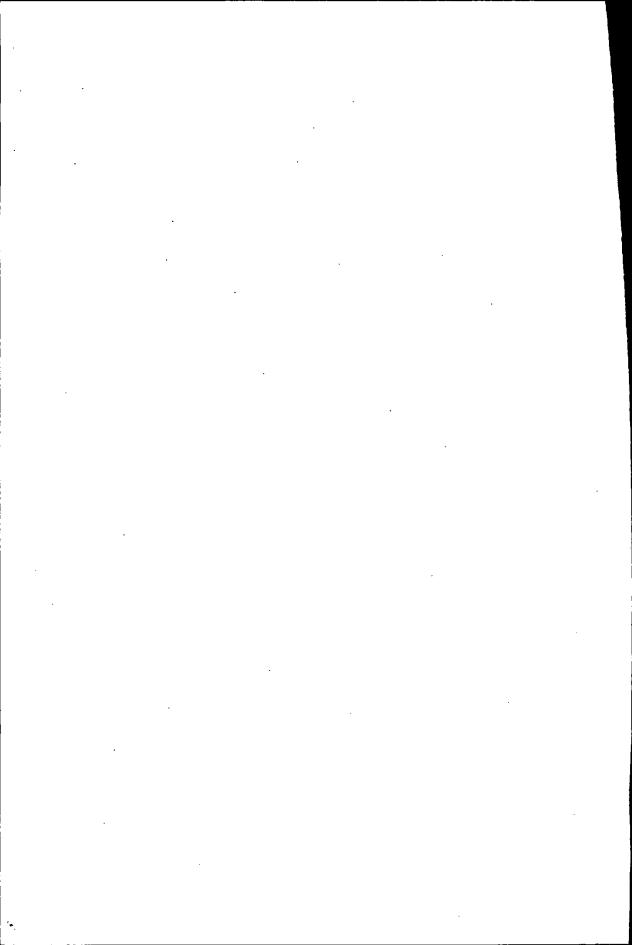
My thanks and appreciation are due to **Prof. Mona Mohamed Rafik**, Professor of Clinical Pathology, Ain Shams University, for her valuable advice in the laboratory part of this work.

No words can describe the enormous effort and generous help of **Prof. Elham Hossny**, Professor of Pediatrics, Ain Shams University, to whom I am truly indebted. Her enthusiasm and honest assistance in every step made the achievement of this work possible.


The sincere help of **Dr. Manal Zaghloul**, Assistant Professor of Clinical Pathology, Ain Shams University is truly acknowledged. She gave me a lot of her valuable time to achieve the laboratory part of this work.

A great deal of my gratitude goes to the infants and their parents for their kind cooperation and patience.

I am also grateful to my professors and colleagues in the Pediatric Allergy and Immunology Unit, who gave me lots of support and understanding.


Ossama Yassin

June 2001

Contents

	Page
List of abbreviations	i
List of figures	iii
List of tables	iv
Introduction and Aim of the Work	1
Review of Literature	
Etiology of Allergy	3
Genetic and Environmental Interactions	3
Genetic insight	3
• Environmental insight	6
Air pollution	7
Tobacco smoke	8
Environmental infections	8
Social stress	11
Environmental indoor aeroallergens	12
•	15
Food allergy	13 19
Pathogenesis of Allergy	20
Immunoglobulin E (IgE) Immunoglobulin D (IgD)	23
Immunoglobulin D (IgD) Coll page position in alloway	25 25
Cell cooperation in allergy Mast cells	25
Eosinophils	27
Basophils	30
Other immune cells	31
• Cytokines	31
(1) Interferons	36
Interferon gamma	36
(2) Interleukins	40
(3) Colony stimulating factors	47
(4) Other cytokines	47
• Chemokines	50
Subjects and Methods	55
Results	61
Discussion	85
Recommendations	98
Summary	99
References	101
Arabic Summary	
ALADIC DUMMALY	

List of Abbreviations

ABC Absolute basophilic count

AEC Absolute eosinophilile count

AD Atopic dermatitis

AFCs Antibody forming cells
APC Antigen presenting cell

Ba HR Basophil histamine releasability

BAL Bronchoalveolar lavage

BCG Bacillus Callmette-Guerin

BHR Bronchial hyperresponsiveness in asthma

c-AMP Cyclinc adenosine monophosphate

Ch Chromosome

CS Cesarean section

CSF Colony stimulating factor

CTMC Connective tissue mast cells

DNA Deoxyribonucleic acid

ECP Eosinophil cationic protein

EDN Eosinophil derived neurotoxin

EPO Eosinophil peroxidase

 $F_{CE} RI$ High affinity receptors for IgE

 F_{CE} RII Low affinity receptors for IgE

FEV₁ Forced expiratory volume in one second

FHA Family history of atopy

GI Gastrointestinal

GM-CSF Granulocyte macrophage colony stimulating factor

hIFN-γ Human interferon-gamma

HLA Human leucocyte antigen

IFNs Interferons

IFN-α Interferon-alpha

IFN-β Interferon-beta

IFN-γ Interferon-gamma

IgA Immunoglobulin A

IgD Immunoglobulin D

IgE Immunoglobulin E

IgG Immunoglobulin G
IgG2 Immunoglobulin G2

IL Interleukin

LPS Lipopolysaccharide

LTB4 Leukotrienes B4
LTC4 Leukotrienes C4

LTD4 Leukotrienes D4

MBP Major basic protein

M-CSF Macrophage colony stimulating factor

MHC Major histocompatibility complex

MMC Mucosal mast cells
MNCs Mononuclear cells

NK cells Natural killer cells

NVD Normal vaginal delivery

PGD2 Prostaglandins D2

PGE2 Prostaglandins E2

RSV Respiratory syncytial virus

SD Standard deviation

TGF Transforming growth factor

 T_{H0} T-helper 0 cells T_{H1} T-helper 1 cells T_{H2} T-helper 2 cells

TLC Total leucocytic count

TNF Tumor necrosing factors

VIP Vasoactive intestinal peptide

List of Figures

	•	P
Fig. (1):	Passive transfer of animal dander from school to home	_
Fig. (2):	Gastrointestinal hypersensitivity disorders	
Fig. (3):	Cutaneous hypersensitivity disorders	
Fig. (4):	Respiratory hypersensitivity disorders	
Fig. (5):	Induction and effector mechanisms in type I	,
F: (6)	hypersensitivity	2
Fig. (6):	Mast cell activation and physiological effects of mast cell derived mediators	2
Fig. (7):	Eosinophils activators and mediators	2
Fig. (8):	Major cytokines sources and actions	3
Fig. (9):	Actions of IFN-γ	3
Fig. (10):	Three types of cytokine inhibitors	4
Fig. (11):	Test principle in determination of serum IFN-γ by	4
	ELISA	5
Fig. (12):	Relation between family history of allergy and the)
6 ()	subsequent development of allergic disorders in the	
•	studied infants	7
Fig. (13):	Variation of cord serum IFN-γ concentration with the	7
0 (***)	subsequent development of allergic disorders	7
Fig. (14):	High rates of cord serum IgE detectability in infants	/
6. ().	with subsequent allergy development during the first	
	year of life	. 7
Fig. (15):	Relation between cord serum IFN-γ and IgE	74
U (= -).	detectability	70
Fig. (16):	Negative correlation between the absolute eosinophilic	1
<i>G</i> : \- • /•	count and serum IFN-γ in cord blood	70
Fig. (17):	Negative correlation between the absolute basophilic	.79
-6. (17).	count and IEM win and blood	0.0
Fig. (18):	Count and IFN-γ in cord blood	80
18. (10 <i>)</i> .	Negative correlation between the total leucocytic	
ig. (19):	count and IFN-g in cord blood	81
18. (17).	Positive correlation between absolute basophilic count	
	and absolute eosinophilic count in cord blood	82

List of Tables

		Page
Table (1):	Signs and symptoms of food-induced allergic reactions in various target organs	16
	•	
Table (2):	Functional classification of cytokines	33
Table (3):	Effects of IL-1 on immediate hypersensitivity and allergic disease	41
Table (4):	Human chemokines: biologic features	51
Table (5):	Basic steps of the h-interferon-γ ELISA	58
Table (6):	The clinical and laboratory data of the eighty babies enrolled in the study	64
Table (7):	Variation of some laboratory data with the family history of atopy among the studies sample	71
Table (8):	Variation of cord blood basophil and eosinophilic counts and cord serum IgE concentrations with the subsequent development of allergic disorders	73
Table (9):	Relations of some cord blood parameters to the site of allergy development on follow up for one year	75
Table (10):	Relation of serum IFN-γ positivity to basophil and eosinophil counts and serum IgE levels in cord blood	76
Table (11):	Relation between gender and some of the laboratory parameters studied	78
Table (12):	Variation of some numerical parameters with the subsequent development of allergy	83
Table (13):	Variation of some variables with the subsequent	84