

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Faculty of Education Mathematics Department

SET THEORY'S EXTENSIONS-BASED ANALYSIS

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Doctor of Philosophy Degree in Teacher's Preparation in Science

(Pure Mathematics)

Submitted to:

The Department of Mathematics, Faculty of Education, Ain Shams University

 $\mathbf{B}\mathbf{y}$

Hanan Hasan Mohamed Hasan Sakr

Assistant Lecturer at,
Mathematics Department, Faculty of Education, Ain Shams
University

Supervised by

Prof. Nashat Faried Mohamed Fathy

Professor of Pure Mathematics Faculty of Science Ain Shams University Dr. Mohamed Sabri Salem Ali

Associate Professor of Pure Mathematics Faculty of Education Ain Shams University

(2020)

بِسَمِ ٱللهِ ٱلرَّحْمَنِ ٱلرَّحِيمِ

"وقل ربي زدني علما"

سورة طه الآية (114)

Faculty of Education Mathematics Department

Candidate: Hanan Hasan Mohamed Hasan Sakr

Thesis Title: Set Theory's Extensions-Based Analysis

Degree: Doctor of Philosophy in Teacher's Preparation in

Science

(Pure Mathematics)

Supervisors:

No.	Name	Profession	Signature
1.	Prof. Nashat Faried Mohamed Fathy	Professor of Pure Mathematics, Mathematics Department, Faculty of Science, Ain Shams University.	
2.	Dr. Mohamed Sabri Salem Ali	Associate Professor of Pure Mathematics, Mathematics Department, Faculty of Education, Ain Shams University.	

In the name of Allah most graceful most merciful "BISMILLAH ERRAHMAN ERRAHEEM"

Acknowledgements

First of all, my gratitude and thanks to gracious **Allah** who always helps and guides me. I would like to thank **the prophet Mohamed** "peace be upon him" who urges us to seek knowledge and who is the teacher of mankind.

I would like also to thank the supervision committee:

Prof. Nashat Faried Mohamed Fathy, Professor of Pure Mathematics, Faculty of Science, Ain Shams University, for accepting supervision of me, learning me ethics and scientific research assets, his good care for me and my colleagues and for his support, encouragement and continuing guidance during preparing this thesis. He discussed with me many research problems in the seminar of Functional Analysis which is held at Faculty of Science, Ain Shams University.

Dr. Mohamed Sabri Salem Ali, Associate Professor of Pure Mathematics, Faculty of Education, Ain Shams University, who provided me with guidance and continuous encouragement. He offered me much of his precious time and provided me with his wisdom and knowledge through many discussions we had.

Thanks also are due to **Prof. Ehab Fathy Mohamed**, Head of Mathematics Department, Faculty of Education, Ain Shams University and all staff members for providing me with all facilities required to the success of this work.

Many thanks to all my teachers and my fellow companions of scientific research in the school of Functional Analysis, headed by Prof. Nashat Faried Mohamed Fathy.

At the end, I am appreciative to my kind parents, my husband and my beloved family for their support, patience, sacrifice and continuous encouragement. Finally, gratitude and thanks to gracious **Allah** who always helps and guides me and all praise is for **Allah** by whose favour good works are accomplished.

Hanan Sakr Cairo 2020

Dedication

Dedicated to,

My husband &My children;

Alaa and Youssef

Contents

List of	Publications	1
List of	Abbreviations and Symbols	2
Summa	ary	4
$\overline{\text{Introdu}}$	action	11
1 Defi	nitions and Preliminaries	17
1.1	Fuzzy sets	18
	1.1.1 Fuzzy set definition	18
	1.1.2 Operations and properties of fuzzy sets	19
1.2	Vague sets	21
	1.2.1 Vague set definition	21
	1.2.2 Operations and properties of vague sets	22
	1.2.3 Intervals operations	25
1.3	Soft sets	26
		27
	1.3.2 Example of soft set	27
	1.3.3 Operations and properties of soft sets	28
1.4	Soft matrices	29
	1.4.1 Soft matrix definition	29
	1.4.2 Example of soft matrix	31
1.5	Fuzzy soft sets	31
	1.5.1 Fuzzy soft set definition	31
	1.5.2 Operations and properties of fuzzy soft sets	33

	1.6	Fuzzy soft matrices	35
		1.6.1 Fuzzy soft matrix definition	35
		1.6.2 Example of fuzzy soft matrix	36
	1.7	Fuzzy soft points, fuzzy soft vectors and their based	
		analysis	37
		1.7.1 Fuzzy soft points	37
		1.7.2 Fuzzy soft metric	40
		1.7.3 Fuzzy soft vectors	40
		1.7.4 Fuzzy soft norm	42
	1.8	Vague soft sets	46
		1.8.1 Vague soft set definition	46
		1.8.2 Operations and properties of vague soft sets	47
2		ue Soft Matrix Theory Applied to Medical Diagno-	
		and Educational Evaluation	51
	2.1	Vague soft matrix theory	52
		2.1.1 Vague soft matrix definition	52
		2.1.2 Example of vague soft matrix	54
		2.1.3 Different types of vague soft matrices	55
		2.1.4 Operations of vague soft matrices	57
		2.1.5 Relations between different types of vague soft	
		matrices	61
		2.1.6 De Morgan's laws of vague soft matrices	68
	2.2	Applications	70
		2.2.1 Methodology and algorithm	70
		2.2.2 First case study: medical diagnosis	74
		2.2.3 Second case study: medical methods	82
		2.2.4 Third case study: educational evaluation	90
		2.2.5 The merits of the proposed method	98
3	Fuz	zy Soft Inner Product Spaces	99
	3.1	Fuzzy soft inner product space	99
	3.2	Fuzzy soft Cauchy-Schwartz inequality	103
	3.3	Examples of the fuzzy soft inner product space	109

	3.4	Fuzzy soft polarization identity	113
	3.5	Fuzzy soft parallelogram law	116
	3.6	Fuzzy soft continuity property	117
	3.7	Fuzzy soft orthogonality	119
4		zy Soft Hilbert Spaces	123
	4.1	Fuzzy soft Hilbert space	123
	4.2	Examples of the fuzzy soft Hilbert space	127
	4.3	Fuzzy soft orthonormal family	128
	4.4	Fuzzy soft Bessel's inequality	131
	4.5	Fuzzy soft Parseval's formula	136
F	-		7 100
5		zy Soft Linear Operators in Fuzzy Soft Hilbert Space	
	5.1	Fuzzy soft linear operator	139
	5.2	Fuzzy soft spectral theory of the fuzzy soft linear operator	r 146
	5.3	Fuzzy soft right shift operator and fuzzy soft left shift	
		operator	149
	5.4	Fuzzy soft self-duality of fuzzy soft Hilbert space	155
0			
6		ne Special Types of Fuzzy Soft Linear Operators in	
		zy Soft Hilbert Spaces	162
	6.1	Fuzzy soft symmetric operators	162
		6.1.1 Definition of the fuzzy soft symmetric operator	163
		6.1.2 Example of the fuzzy soft symmetric operator .	163
		6.1.3 Spectral theory of the fuzzy soft symmetric op-	
		erator	165
	6.2	Fuzzy soft hermitian operators	167
		6.2.1 Definition of the fuzzy soft hermitian operator .	167
		6.2.2 Spectral theory of the fuzzy soft hermitian operator	r169
		6.2.3 Examples of the fuzzy soft hermitian operator .	170
	6.3	Fuzzy soft normal operators	172
		6.3.1 Definition of the fuzzy soft normal operator	172
		0.3.1 Deminion of the ruzzy soft normal operator	
		6.3.2 Examples of the fuzzy soft normal operator	172
		<u> </u>	

CONTENTS

6.4.1	Definition of the fuzzy soft isometry operator	r .	181
6.4.2	Spectral theory of the fuzzy soft isometry ope	erato	r182
Fuzzy	soft unitary operators		183
6.5.1	Definition of the fuzzy soft unitary operator		183
6.5.2	Examples of the fuzzy soft unitary operator		184
6.5.3	Spectral theory of the fuzzy soft unitary ope	rator	186
6.5.4	Fuzzy soft unitary equivalence		187
ısions	and Future Work		191
	1		104
graphy			194
Sumr	nary		200
	6.4.2 Fuzzy 6.5.1 6.5.2 6.5.3 6.5.4 sions	6.4.2 Spectral theory of the fuzzy soft isometry operators soft unitary operators	6.5.4 Fuzzy soft unitary equivalence