

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Development of solar cell for large area motion detection

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Heba Abdelmoneim Atia

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Higher Institute of Engineering, EL Shourok Academy, 2014

Supervised By

Prof. Dr. Abdelhalim Zekry

Faculty of Engineering, Ain shams university

Dr. Ahmed Shaker

Faculty of Engineering, Ain shams university

Cairo - (2021)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics and Communications

Development of solar cell for large area motion detection

by

Heba Abdelmoneim Atia

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Higher Institute of Engineering, EL Shourok Academy, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Fathy Abdelfattah Farag	
Electronics and Communications,	
Faculty of Engineering, Zagazig university	
Prof. Dr. Wagdy Refaat Anis	
Electronics and Communications,	
Faculty of Engineering, Ain shams university	
Prof. Dr. Abdelhalim Abdelnabi Zekry	
Electronics and Communications,	
Faculty of Engineering, Ain shams university	

Date: 21 September 2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Heba Abdelmoneim Atia
Signature

Date: 21 September 2021

Researcher Data

Name : Heba Abdelmoneim Atia

Date of birth : 09/12/1992

Place of birth : Cairo/Egypt

Last academic degree : Bachelor of Science in Electrical Engineering

Field of specialization : Electronics and Communications

University issued the degree : Higher Institute of Engineering, EL Shourok

Academy

Date of issued degree : May 2014

Current job : Quality Assurance at NetCentric Egypt

Executive summary

Detecting the position and tracking the motion of a moving body is research topic that gained a significant interest from the researchers for a long time due to its very important role in many fields ranging from analyzing the human body movement for rehabilitation and sport performance, computer graphics, virtual surveillance to many other applications.

A lot of motion detection and tracking systems have been developed using different technologies such as systems that use inertial sensors and/or magnetic sensors, systems that is based on using markers fixed on the moving body and detecting them with cameras. Also, there are systems that depend on using video cameras and image processing techniques for motion detection which are considered the most used systems. Another new approach has been introduced in 2019 using a position sensitive detector (PSD) and optical components for motion detection.

The PSD is a sensor that can track a laser beam moving on its surface. It could detect the laser position in one or two dimensions where the output current indicates the incident light spot position. The PSDs are used in many applications such as non-contact distance measurement, vibration measurement, laser beam alignment, rotational speed measurement and many more applications.

In this thesis, we introduce a novel technique to detect and track the moving body motion by taking advantage of the common characteristics between the PSD and the solar cell to develop a solar cell that can function as a motion detector. First, a module of the modified solar cell was simulated by TCAD

simulation tools to calculate the detected photocurrent as a function of the position of an incident laser beam sourced by the moving object. Then, a practical module of the modified solar cell has been developed and used in a simple system for detecting the motion, where the output signal of this modified solar cell was processed using a microcontroller circuit. Next, the output is displayed using a PC application. It has been found that the measured system output matches the simulation results by measuring the same simulated output photocurrents. Finally, the position detection error was calculated to verify the proposed technique.

The combination of the useful features of both the solar cell and the PSD achieves some advantages. Regarding the solar cell, the benefits include its large active area compared to the PSD active area, low price and availability. While, for the PSD, the advantages include its high-speed response, excellent position resolution and wide-spread response range. The error assessment of the proposed system showed a low position detection error less than 10%.

Keywords:

Position Sensitive Detector, PSD, Solar Cell, Large Active Area, Motion Detector, Optical Motion Detection, Output Display, TCAD, Simulation, Position Detection Error

Acknowledgement

First and foremost, thanks and praises to the God, the almighty for his blessings to learn a lot of new things and complete my research successfully.

I would like to express my deepest appreciation and gratitude to Professor Abdelhalim Zekry and Doctor Ahmed Shaker my research supervisors, who guided and helped me throughout this research.

I would like to thank Professor Abdelhalim Zekry for his motivation, sincerity and his helpfulness. I learned a lot from him like the methodology to carry out the research, how to present the research in the best way and the dedication for what I'm doing to achieve the research goals.

I would like to thank Doctor Ahmed Shaker as well for his help throughout the research and his cooperation to complete the research. I learned from him how to write a good scientific paper and how to arrange my research points to show them in the best possible way.

I'm extremely grateful for my late father for him being my biggest motivation to complete my research to make him proud, my mother for her prayers and love, my sisters and friends for their love and support. My special thanks goes to my best friend for her help and support.

Table of contents

Executive summary	V
Acknowledgement	VII
Table of contents	VIII
List of figures	X
List of tables	XII
List of abbreviations	XIII
List of symbols	XV
Chapter 1. Introduction	1
1.1 Thesis objective	1
1.2 PSD applications	1
1.3 Motion detection and tracking applications	3
1.4 Previous work	5
1.5 Thesis organization	7
Chapter 2. The basic theory of solar cell and the PSD	9
2.1 Chapter overview	9
2.2 Position Sensitive Detectors (PSDs)	10
2.2.1 Working principle	11
2.2.2 Position detection error	13
2.3 Solar cells	15
2.3.1 Working principle of the c-Si	16
2.3.2 Solar cell equivalent circuit	17
Chapter 3. TCAD simulation	19
3.1 Chapter overview	19
3.2 Construction of the modified solar cell	19
3.3 The performance of the structure	21
3.4 The position detection error	25
Chapter 4. Practical system and the final results	26
4.1 Chapter overview	26

Table of contents

4.2 System components	26
4.2.1 Laser	27
4.2.2 The modified solar cell	28
4.2.3 Signal amplifier	31
4.2.4 Analog to digital converter	31
4.2.5 The output display application	34
4.3 Final results	35
Conclusion	39
Appendix A. Silvaco Code	41
1. Athena code	41
2. Atlas Code	42
Appendix B. Datasheet	45
1. Laser HLM1230 datasheet	45
2. Op-amp LM324N datasheet	46
Appendix C. Output displaying application C# Code	48
References	XVII
Published papers:	XXIV
الملخص	XXV

List of figures

Figure 1.1 Laser triangulation principle
Figure 1.2 Motion detection/tracking classification5
Figure 2.1 (a) 1D PSD cross-sectional view (b) Active area plan view12
Figure 2.2 The equivalent circuit of 1D PSD
Figure 2.3 PSD cross-sectional view
Figure 2.4 (a) The solar cell schematic diagram (b) Solar cell cross-sectional
view17
Figure 2.5 (a) Series resistance in a solar cell, and (b) a distributed solar cell
for one segment
Figure 3.1 The proposed modified solar cell structure
Figure 3.2 The modified solar cell structure using Athena21
Figure 3.3 Modified solar cell sectional view showing the photogeneration rate
(at the left) and the total current density (at the right) when the laser incident
on different points: (a) at -20 μm from the center point, (b) center point and
(c) at 40 μm from the center point
Figure 3.4 (a) The two output current signals while using two laser beams with
different wavelength (b) The difference between the two output current signals
24
Figure 3.5 The Position detection error of the modified solar cell25
Figure 4.1 System Block Diagram
Figure 4.2 Image of red laser module (HLM1230)27
Figure 4.3 Image of a c-Si solar cell surface
Figure 4.4 Photograph of the cell in the solution
Figure 4.5 The modified solar cell
Figure 4.6 (a) Inverting amplifier circuit by Proteus (b) Printed circuit board
for the inverting amplifier circuit31

List of figures

Figure 4.7 Image of Arduino Uno	32
Figure 4.8 Screen shot of the form application	35
Figure 4.9 The system equivalent circuit	36
Figure 4.10 Photo of the practical system	36
Figure 4.11 The output results of the sensed voltages versus the lase	r beam
position X	37

List of tables

Table 2.1 Types and classification of photodetectors [42]	10
Table 3.1 The used parameters in the Athena process simulation	20
Table 4.1 The position detection error	38