

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Antegrade Ureteric Stenting in Management of Ureteric Obstruction in Case of Difficult Retrograde Access; Indications, Success Rates & Predictors of Failure

Thesis

Submitted for Partial Fulfillment for M.D in Urology

By

Amr Mohamed Sayed Zriek

M.B.B.Ch., M.SC. (Urology)

Supervised by

Prof. Dr. Khaled Abd El Fattah Hassan Taema

Professor and Head of Urology Department Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Hany Hamd Gad

Assistant Professor of Urology Faculty of Medicine - Ain Shams University

Dr. Mohamed Ebrahim Ahmed

Lecturer of Urology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University

2021

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Khaled Abd El Fattah****The Talenta Abd El Tattah

**The Talenta Abd El Tattah

**

Special thanks to Assist. Prof. Dr. Hany Hamd Gad, Assistant Professor of Urology, Faculty of Medicine, Ain Shams University, for his sincere efforts & for his wise academic and clinical supervision.

I am deeply thankful to **Dr. Mohamed Ebrahim**Ahmed, Lecturer of Urology, Faculty of Medicine, Ain

Shams University, for his great help, outstanding support.

Special thanks to our patients who accepted to be part of this study, without them those papers wouldn't be written.

Words are not enough to thank my family; my mother, father, my wife & my kids EYAD & DORRH, all of them shared my dream & still.

Amr Mohamed Sayed Zriek

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Anatomy	6
Pathophysiology of Urinary Tract Obstruction	24
Drainage of Obstructed Urinary Tract	32
Patients and Methods	69
Results	79
Discussion	94
Summary and Conclusion	107
References	109
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ASA	.American Society of Anesthesiologists
AGDJ	Antegrade double J
BMI	.Body Mass Index
BUN	.Blood Urea Nitrogen
BUO	.Bilateral Ureteric Obstruction
CBC	Complete Blood Count
CT scan	Computed Tomography scan
CX	Cancer
DJ	$ Double\ J\ stent$
DTPA	.Diethylene Triamine Pentaacetic Acid
FENa	.Fractional urinary sodium Excretion
Gd-DTPA	Gadolinium diethylene triaminepentaacetate
<i>GMV</i>	.Galadako Modified Valdivia
<i>GW</i>	.Guide Wire
<i>IVU</i>	Intravenous Urogram
MAG3	. Mer cap to a cetyl trigly cine
MHz	Megahertz
<i>MPA</i>	.Multipurpose Angiographic catheter
MRI	Magnetic resonance imaging
MRU	Magnetic resonance urography
PCN	Percutaneous Nephrostomy
PTFE	Polytetrafluoroethylene
PUJ	.Pelviureteric junction

Tist of Abbreviations cont...

Abb.	Full term
RGDJ	Retrograde double j
RI	Resistive index
TURBT	Transurethral Resection of Bladder Tumor
TURP	Transurethral Resection of the Prostate
UEAS	Uretero-enteric anastomotic stricture
<i>UO</i>	Ureteric Obstruction
URS	$\dots Ureterorenoscopy$
UTI	Urinary tract infection
UUO	Unilateral Ureteric Obstruction

Tist of Tables

Table No	. Title	Page No.
Table 1:	Demographic data	79
Table 2:	Causes of ureteric obstruction	81
Table 3:	Trials of retrograde urteteric stenting in	group II 83
Table 4:	Intraoperative technical causes of fretrograde stenting in both groups	
Table 5:	Antegrade dj success /failure in both gr	oups 85
Table 6:	Antegrae dj success/failure in group II	86
Table 7:	Dye study and its value as predictor of stailure for antegrade ureteric stenting in	
Table 8:	Dye study and its value as predictor of stallure for antegrade uretertic stagroup II	nting in
Table 9:	Complications of both groups	89
Table 10:	Auxiliary procedures needed in both gr	oups90
Table 11:	Types of anesthesia needed in both gro	ups91
Table 12:	Operative time and hospital stay	92
Table 13:	Comparison between preoperative postoperative serum creatinine level groups	in both

List of Figures

Fig. No.	Title	Page No.
Figure 1: Figure 2:	Renal orientation in vertical axis Schematic of a lateral view of a lor section through the retroperitoneum the posterior (P) and anterior (A) lay	ngitudinal n showing vers of the
Figure 3:	Schematic of a superior view of a section of the kidneys at the level of the lumbar vertebra showing the	transverse the second e three
Figure 4:	compartments of the retroperitoneal sp Schematic of an anterior view of	•
Figure 5:	fascia (Gerotas' fascia) and kidneys. Schematic of an inferior view	10
rigure 5.	diaphragmatic dome	
Figure 6:	Schematic of a lateral view of the king its relationships with the diaphra pleura, and lung	idney and gm, ribs,
Figure 7:	(A) Inferior view of a transverse sect level of the suprahilar region of the k Similar section to A at the leve	ion at the cidney. (B) el of the
Figure 8:	infrahilar region	on at the
Figure 9:	Schematic of a longitudinal section	
Figure 10:	Schematic representation of the	possible
Figure 11:	minor calyx (mc) arrangements Calyceal orientations in the Br	
rigure 11:	Hodson configurations	
Figure 12:	Pelvicalyceal system Group A	
Figure 13:	Pelvicalyceal system Group A Type A	
Figure 14:	Pelvicalyceal systems Group B. Type	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 15:	Group B Type B-II: shows the midzone drained by minorcally entering directly into therenal independently of both the superior inferior (I) calyceal groups	yces (M) l pelvis, r (S) and
Figure 16:	Intrarenal arterial anatomy	
Figure 17:	Schematic drawing of OR organization	
Figure 18:	Galdakao-modified supine Valdivia	
C	(lateral view) & (front view)	_
Figure 19:	Calyx selection for percutaneous ent	
Figure 20:	Technique of bypassing angulated u	-
Figure 21:	Change in respiration to alter urete	
Figure 22:	Technique of bypassing tight strictu	
Figure 23:	Use of safety thread to position	
O	pigtail	
Figure 24:	BMI in group I & II	
Figure 25:	Sex distribution in both groups	
Figure 26:	Age distribution in both groups	
Figure 27:	Causes of ureteric obstruction in bot	
Figure 28:	Trials of retrograde urteteric st	
C	group II	_
Figure 29:	Intraoperative technical causes of	failure of
O	retrograde stenting in both groups	
Figure 30:	Antegrade dj success /failure in both	
Figure 31:	Antegrae dj success/failure in group	

Introduction

ilatation of the renal pelvis and calices as a result of urinary tract obstruction can be intrinsic or extrinsic and can result from both benign and malignant aetiologies. Extrinsic obstruction is most often caused by compression or mural infiltration of the ureter wall by a surrounding pelvic mass, for instance a urologic, gynaecologic or colorectal tumour. Furthermore, extrinsic obstruction can be caused by benign aetiologies such as retroperitoneal fibrosis, scar tissue, endometriosis, inflammation or, in rare circumstances, by anatomic variants (Hausegger et al., 2006).

The management of ureteric obstruction depends upon the underlying pathology, type/cause of obstruction/ stricture and also the patient's preference and whether or not the patient is fit to undergo anesthesia (Venyo & Bakir, 2011).

Patients who require temporary or long term urinary drainage for obstruction of the upper urinary tract may be managed by a number of procedures some of which include percutaneous nephrostomy insertion, antegrade ureteric stent insertion, retrograde ureteric stent insertion, ileal conduit construction, ureterostomy procedure as well as uretero-ureteric anastomosis (Venyo & Bakir, 2011).

In general, the treatment of choice in acute hydronephrosis is insertion of a percutaneous nephrostomy

catheter (PCN). However, this external drainage catheter shows a high incidence of complications in long-term management, such as infection and dislocation (Venyo & Bakir, 2011).

The first two procedures can be performed with the use of local anesthesia, sedation and analgesia, but the remaining procedures do require the use of general anesthesia in the operating theatre and require the patients to be fit to undergo general anesthesia (Hausegger et al., 2006).

Patients with benign/malignant ureteric strictures are often treated with ureteric stenting via an antegrade, retrograde or combined approach (Chitale et al., 2002).

institutions retrograde stent insertion most first. Retrograde stent insertion attempted is typically performed under with cystoscopic guidance patients occasionally under general anaesthesia. In patients with malignant obstruction the retrograde approach may be difficult, or even impossible (Yossepowitch et al., 2001).

retrograde ureteric Sometimes stenting may abandoned in theatre due to the inability of the surgeon to advance the guidewire by the retrograde approach beyond the point of obstruction; in such cases the only options left are insertion of a percutaneous nephrostomy plus or minus an attempt at insertion of the ureteric stent by means of the antegrade approach (Hausegger et al., 2006).

It is also possible for a ureteric stent to be inserted in a patient who is temporarily not fit to undergo general anesthesia (Venyo & Bakir, 2011).

The major complication of the antegrade technique is retroperitoneal bleeding. Transfusion-demanding bleeding ranges between 1% and 4% in case of standard PCN (Wah et al., 2004).

The retrograde approach avoids the potential complications of PCN, which is the prerequisite for antegrade stent placement. Potential complications of a double J catheter, and thus for both techniques, are perforation, infection, haematuria, malposition, migration, inadequate relief of obstruction and ureteral erosion or fistulisation (Makramalla & Zuckerman, 2011).

Several studies report on the results of retrograde internal stent placement, sometimes in comparison with PCN. These studies show that retrograde stent insertion is technically successful in more or less 75% of cases. Only two studies compare retrograde and antegrade double-J catheter placement, however not in randomized fashion (Monsky et al., 2013).

In a series of 65 patients Chitale et al. retrospectively compare technical success rates of retrograde stent insertion with PCN followed by antegrade stent placement in patients with malignant obstruction. The retrograde approach had a

success rate of only 21%. On the other hand, antegrade stent insertion was successful in 98% cases. They conclude that obstruction of the pelvic ureter is best managed by two-stage antegrade ureteric stenting. In a series of 50 obstructed ureters (in 30 patients) Uthappa et al. report success rates of 50% and 96%, of respectively retrograde and antegrade stent insertion (Uthappa & Cowan, 2005).