

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

"Application of curcumin-magnetic nanoparticles for the diagnosis of Alzheimer's disease using Drosophila melanogaster (Drosophilidae: Diptera) as a study model"

A thesis submitted in partial fulfillment for the award of Master of Science Degree (M.Sc.) in Entomology Ain Shams University

By Aya Ahmed Saeed Mohamed

(B.Sc. Entomology 2015)

Supervisors Prof. Dr. Magdi Gebril Shehata

Professor of Medical Entomology, Faculty of Science, Ain Shams University

Prof.Dr. Abdel-Rahman Nabwi Zekri

Professor of Virology and Immunology, Cancer Biology Department, National Cancer Institute, Cairo University- Vice President of Cairo University for Research and Postgraduates Affair.

Dr. Enas Hamdy Saad

Lecturer of Entomology, Faculty of Science, Ain Shams University (2020)

This work was supported by Academy of scientific research and technology, Scientists for the next-generation grant, grant reference no: 34 SNG-2015.

Contents:

Title	Page
Abbreviations	I
List of Tables	Ш
List of Figures	IV
Abstract	1
Introduction	2
Literature reviews	
Materials and Methods	
Results	
Discussion	
English summary	
References	62
Arabic summary	

ABBREVIATIONS:

AD Alzheimer disease

APoE Apolipoprotein E

APP Amyloid precursor protein

APPL β-amyloid protein precursor like

ATCC American Type Culture Collection

ATP Adenosine triphosphate

Aβ Amyloid beta

BBB Blood Brain Barrier

BHK Baby Hamster Kidney fibroblasts

cDNA Complementary DNA

CSF Cerebrospinal fluid

CTCF Corrected Total Cell Fluorescence

Cur-MNPs Curcumin-Magnetic Nanoparticles

DLS Dynamic Light Scattering

DMEM Dulbecco's Modified Eagle Medium

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

dNTP Deoxynucleoside triphosphate

FAD Familial Alzheimer disease

FBS Fetal bovine serum

FDA Food and Drug Administration

Fe3O2 Iron Oxide

FePt Iron Platinum

H Hour

IC50 The half maximal inhibitory concentration

IntDen Integrated Density

ABBREVIATIONS

Io-MNPs Iron Oxide Magnetic Nanoparticles

MNPs Magnetic Nanoparticles

MRI Magnetic resonance imaging

MTT Tetrazolium Salt, 3-4,5 Dimethylthiazol-2,5

Diphenyl Tetrazolium Bromide

N18TG2 Neuroblastoma cells

Nep2 Neprilysin-2

NIRF Near-Infrared Fluorescence

O.D Optical density

PBS Phosphate Buffer Saline

PCR Polymerase Chain Reaction

PDB Protein Data Bank

PET Positron Emission Tomography

Psn Presenilin

RNA Ribonucleic acid

Ros Reactive Oxygen Species

RPMI Roswell Park Memorial Institute medium

RTC Research and Training Center on vector of

diseases

RT-PCR Reverse transcription polymerase chain

reaction

SD Standard Deviation

TEM Transmission Electron Microscopy

Figures

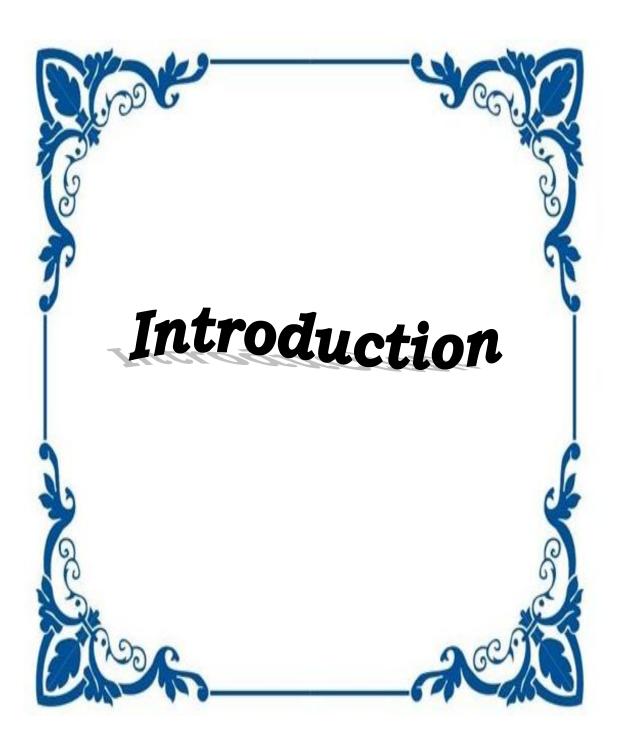
List of Tables:

Number	Title	Page
Table III.1	The source of the used fine chemicals	29
Table III.2	Different sequences of the primers for RT-PCR	39
Table IV.1	The integrated density and CTCF values of fluorescence images for (A) control flies and (B) induced flies at 330, 450 and 510 nm wavelengths.	51
Table IV.2	The mean, ±SD and p-value of CTCF values of (A) control flies and (B) induced flies for curcumin, MNPs and conjugate at three wavelengths (330,450,510 nm) respectively. The averaged values were shown with standard deviation (n=2).	52
Table IV.3	Curcumin and magnetic nanoparticles –B-amyloid complex energy parameters.	72

List of Figures:

Number	Title	Page
Figure II.1	Mechanism of action of curcumin in AD	
Figure II.2	Curcumin mechanism of action in AD	
Figure II.3	BHK-21.	
Figure II.4	N18TG2	
Figure IV.1	(a) UV-Vis absorption spectra of the curcumin and curcumin-magnetic nanoparticles, (b) and (c) the particle size and zeta potential of magnetic nanoparticles.	
Figure IV.2	TEM images of synthesized (A)magnetic nanoparticles and (B, C) curcumin-magnetic conjugate	
Figure IV.3	Effect of different concentrations magnetic nanoparticles, curcumin and the conjugate on the cellular proliferation of (a) BHK-21 and (b) N18Tg2 cell lines following 24 h of treatment.	
Figure IV.4	Abnormalities and changes related to drosophila fly	
Figure IV.5	Fluorescence microscopic images of magnification 20X Brain Tissue of Drosophila	
Figure IV.6	CTCF analysis of curcumin, MNPs and conjugate	
Figure IV.7	TEM analysis of the brain of <i>the Drosophila</i> model of Alzheimer's disease.	
Figure IV.8	Identification of (A) β-Actin level (B)Nep2 mRNA expression	
Figure IV.9	The orientation and binding site of (A)curcumin binding to B-amyloid protein and (B) magnetic nanoparticles binding to B-amyloid protein.	

Abstract


Alzheimer's disease (AD) is a neurological disorder associated with the over expression of amyloid-beta (A β) protein that appears to be the main causative reason.

Drosophila melanogaster is considered as a very significant model organism to study human neurodegeneration including AD, and this seems to be a valuable tool for researchers to improve a new diagnostic approach for neurodegenerative diseases.

There are many new techniques used for diagnosis of AD, including curcumin and nanoparticles. The conjugation of curcumin with magnetic nanoparticles make it a promising potential method for diagnosis.

The purpose of this study is to diagnose the AD by detecting the accumulation of A β via curcumin-magnetic nanoparticles with using *D.melalogaster* and fluorescence imaging technique for detection.

The accumulation of amyloid beta-peptide has been detected via the conjugate using the fluorescence imagining technique. These results suggest that curcumin- magnetic nanoparticles conjugation could be used as a diagnostic tool for AD.

