

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

EFFECT OF ULTRAVIOLET EXPOSURE ON PRODUCTIVE, REPRODUCTIVE, PHYSIOLOGICAL PERFORMANCE AND IMMUNE RESPONSE OF LAYING HENS

By

AHMED MOHAMMED MOHAMMED DIEF YOUSSEF

B.Sc. Agric. Sc. (Animal Production), Fac. Agric., Zagazig University, 1999 M.Sc. Agric. Sc. (Animal Nutrition), Fac. Agric., Zagazig University, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF ULTRAVIOLET EXPOSURE ON PRODUCTIVE, REPRODUCTIVE, PHYSIOLOGICAL PERFORMANCE AND IMMUNE RESPONSE OF LAYING HENS

By

AHMED MOHAMMED MOHAMMED DIEF YOUSSEF

B.Sc. Agric. Sc. (Animal Production), Fac. Agric., Zagazig University, 1999M.Sc. Agric. Sc. (Animal Nutrition), Fac. Agric., Zagazig University, 2005

This thesis for Ph.D. degree has been approved by:	
Dr. Mohamed Abd El-Karim Abaza	•••••
Prof. of Poultry Physiology, Faculty of Agriculture, A	Alexandria University
Dr. Fathy Abdel-Azeem Mohamed Ahmed	•••••
Prof. of Poultry Nutrition, Faculty of Agriculture, A	in Shams University
Dr. Mohamed Ibrahim Abdullah Shourrap	
Associate Prof. of Poultry Physiology, Faculty	of Agriculture, Ain
Shams University	
Dr. Ibrahim El-Wardany El-Sayed Hassan	of Accionations Air
Emeritus Prof. of Poultry Physiology, Faculty	of Agriculture, Ain
Shams University	

Date of Examination: 4/4/2021

EFFECT OF ULTRAVIOLET EXPOSURE ON PRODUCTIVE, REPRODUCTIVE, PHYSIOLOGICAL PERFORMANCE AND IMMUNE RESPONSE OF LAYING HENS

By

AHMED MOHAMMED MOHAMMED DIEF YOUSSEF

B.Sc. Agric. Sc. (Animal Production), Fac. Agric., Zagazig University, 1999M.Sc. Agric. Sc. (Animal Nutrition), Fac. Agric., Zagazig University, 2005

Under the supervision of:

Dr. Ibrahim El-Wardany El-Sayed Hassan

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Ibrahim Abdullah Shourrap

Associate Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Magdy Sayed Hassan Hassan

Chief Researches of Poultry Husbandry, Department of Poultry Breeding, Animal Production Research Institute, Agriculture Research Center

ABSTRACT

The main objective of the current study was to elucidate the role of Ultraviolet (UVA) light with wavelength up to (368 nm) in improving the productive performance and physiological status of two developed strains of chickens. A total number of 165 birds (150 female + 15 male) from each of Silver Montazah and Matrouh strains were used in the study. The experimental period was from 20 to 40 weeks of age. All bids were weighed and randomly distributed into five treatments with three replicates per treatment (10 females and 1 male / replicate) with almost similar initial average body weight. During the experimental period, birds were fed ad libitum a commercial layer diet. Experimental groups were exposed to natural day light which is recommended in the farm, for lighting program as follows: The first group (control group) was exposed to normal day light only, while the second, third, fourth and fifth groups were exposed to 1, 2, 3 and 4 hours/day respectively to UV light from UV lamps after sunset. Birds reared up under similar condition.

Results indicated that live body weight (LBW), feed conversion ratio (FCR), egg production, egg mass, egg quality traits (external and internal), some blood components, immune responses to sheep red blood cells and litter microbial count were significantly improved ($P \le 0.05$) by supplemental exposure of birds to UVA lamps for 2-3 hours daily.

It could be concluded that interaction between strains and artificial source of UVA light by UV lamps was (2-3 hours/day) for both silver Montazah and Matrouh developed local strain of chickens.

The main objective of the current study was to elucidate the role of Ultraviolet (UVA) light with wavelength up to (368 nm) in improving the productive performance and physiological status of two developed strains of chickens. A total number of 165 birds (150 female + 15 male) from each of Silver Montazah and Matrouh strains were used in the study. The experimental period was from 20 to 40 weeks of age. All bids were weighed

and randomly distributed into five treatments with three replicates per treatment (10 females and 1 male / replicate) with almost similar initial average body weight. During the experimental period, birds were fed ad libitum a commercial layer diet. Experimental groups were exposed to natural day light which is recommended in the farm, for lighting program as follows: The first group (control group) was exposed to normal day light only, while the second, third, fourth and fifth groups were exposed to 1, 2, 3 and 4 hours/day respectively to UV light from UV lamps after sunset. Birds reared up under similar condition.

Results indicated that live body weight (LBW), feed conversion ratio (FCR), egg production, egg mass, egg quality traits (external and internal), some blood components, immune responses to sheep red blood cells and litter microbial count were significantly improved ($P \le 0.05$) by supplemental exposure of birds to UVA lamps for 2-3 hours daily.

It could be concluded that interaction between strains and artificial source of UVA light by UV lamps was (2-3 hours/day) for both silver Montazah and Matrouh developed local strain of chickens.

Keywords: UVA, Ultraviolet lamps, Laying hens, light program, Productive performance and Litter microbial count.

ACKNOWLEDGMENT

I would like to express my heartfelt gratitude, sincere appreciation and profound regards to the following people who, in one way or another, gave guidance, strength, and encouragement in making this case presentation possible.

My godfather **Prof. Dr. Ibrahim El-Wardany El-Sayed Hassan** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his support, kind supervision and his personal and academic guidance.

Prof. Dr. Magdy Sayed Hassan Hassan Chief Researcher of Poultry Husbandry, Department of Poultry Breeding, Animal Production Research Institute, Agriculture Research Center, for his supervision and scientific advices, and his help in all stages of the field work, encouragement and revision of the manuscript.

Dr. Mohamed Ibrahim Shourrap Associate Prof. of Poultry Production, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his kind supervision, patience, constructive comments, valuable advices that help me in this work.

Deeply thanks to all the staff members of Poultry Production Department, Faculty of Agriculture, Ain Shams University, for their help and support during the course of the study.

Greatly thanks to all the staff member of Poultry Breeding Department, Animal Production Research Institute, for their help.

Also all my thanks and gratitude to my lovely parents for their praying and help all over my life, and to my family for their support and effort during my post-graduate studies.

Finally, many thanks for everyone helped me in this study.

CONTENTS

	Title	page
	LIST OF TABLES	V
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	6
	2.1. Light in Poultry Production	6
	2.2. Productive Performance	7
	2.2.1 Effect of Light Source on:	
	2.2.1.1. Production and Behavior	7
	2.2.1.2. Egg Production	8
	2.2.1.3. Feed Consumption	8
	2.2.1.4. Feed Conversion Ratio	8
	2.2.1.5. Body Weight	8
	2.3. Reproductive Performance	9
	2.3.1. The Egg and Eggshell	9
	2.3.2. Fertility	10
	2.3.3. Incubation and Hatching	11
	2.4. Physiological Parameters	11
	2.5. Immunology	17
	2.6. Litter traits	23
3.	MATERIALS AND METHODS	24
	1. Experimental procedures	24
	1.1. Experimental birds	24
	1.2. Experimental design	24
	1.3. Management and housing	25
	2. Measurements	25
	2.1. Productive Performance	25
	2.2. Egg production traits	26
	2.3. Egg quality traits	26
	2.4. Blood Sample collection and analytical procedures	28
	2.4.1. Hematological parameters	29
	2.5. Humoral Immune responses	30

	2.6. Litter traits	30
	2.6.1 Microbiological analysis	30
	3. Statistical analysis	31
4.	RESULTS AND DISCUSSION	32
	4.1. Productive performance	32
	4.1.1. Live body weight	32
	4.1.1.1. Effect of strain	32
	4.1.1.2. Effect of Ultraviolet (UV) exposure time	32
	4.1.1.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	33
	4.1.2. Feed consumption	34
	4.1.2.1. Effect of strain	34
	4.1.2.2. Effect of Ultraviolet (UV) exposure time	34
	4.1.2.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	34
	4.1.3. Feed conversion ratio	38
	4.1.3.1. Effect of strain	38
	4.1.3.2. Effect of Ultraviolet (UV) exposure time	38
	4.1.3.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	38
	4.1.4. Egg number	39
	4.1.4.1. Effect of strain	39
	4.1.4.2. Effect of Ultraviolet (UV) exposure time	39
	4.1.4.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	40
	4.1.5. Egg weight	41
	4.1.5.1 Effect of strain	41
	4.1.5.2. Effect of Ultraviolet (UV) exposure time	42
	4.1.5.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	44
	4.1.6. Egg mass	44
	4.1.6.1 Effect of strain	44

4.1.6.2. Effect of Ultraviolet (UV) exposure time	45
4.1.6.3. Effect of interaction between Strain and Ultraviolet	
exposure time	46
4.1.7. Egg production number (%)	46
4.1.7.1. Effect of strain	46
4.1.7.2. Effect of Ultraviolet (UV) exposure time	47
4.1.7.3. Effect of interaction between Strain and Ultraviolet	
exposure time	48
4.1.8 Egg quality	48
4.1.8.1. External egg quality	49
4.1.8.1.1. Effect of strain	49
4.1.8.1.2. Effect of Ultraviolet exposure time	50
4.1.8.1.3. Effect of interaction between Strain and Ultraviolet	
exposure time	51
4.1.8.2. Internal egg quality	53
4.1.8.2.1. Effect of strain	53
4.1.8.2.2. Effect of Ultraviolet exposure time	56
4.1.8.2.3. Effect of interaction between Strain and Ultraviolet	
exposure time	57
4.2. Physiological performance	61
4.2.1. Blood plasma constituents	61
4.2.1.1. Effect of strain	61
4.2.1.2. Effect of Ultraviolet exposure time	62
4.2.1.3. Effect of interaction between Strain and Ultraviolet	
exposure time	63
4.3. Immune responses	66
4.3.1. Hematological parameters	66
4.3.1.1. Effect of strain	66
4.3.1.2. Effect of Ultraviolet exposure time	66
4.3.1.3. Effect of interaction between Strain and Ultraviolet	
exposure time	67
4.3.2. Sheep Red Blood Cells	69

	4.3.2.1. Effect of strain	70
	4.3.2.2. Effect of Ultraviolet exposure time	70
	4.3.2.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	70
	4.3.3. Newcastle Disease antibody	71
	4.3.3.1. Effect of strain	71
	4.3.3.2. Effect of Ultraviolet exposure time	71
	4.3.3.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	72
	4.4. Litter Traits	72
	4.4.1. Effect of strain	72
	4.4.2. Effect of Ultraviolet exposure time	72
	4.4.3. Effect of interaction between Strain and Ultraviolet	
	exposure time	73
5.	SUMMARY AND CONCLUSION	75
6.	REFERENCES	80

LIST OF TABLES

Table		Page
No.		
1	Live Body Weight (g) of Silver Montazah and	
	Matrouh strains as affected by Ultraviolet exposure	
	time (hr./day) during different experimental periods.	36
2	Feed consumption (g/hen/day) of Silver Montazah and	
	Matrouh layers as affected by Ultraviolet exposure	
	time during different experimental periods.	37
3	Feed conversion ratio (g feed/g egg) of Silver	
	Montazah and Matrouh layers as affected by	
	Ultraviolet exposure time during different	
	experimental periods.	40
4	Egg number (hen/period) of Silver Montazah and	
	Matrouh layers as affected by Ultraviolet Exposure	
	Time during different experimental periods.	43
5	Egg weight (g/hen) of Silver Montazah and Matrouh	
	layers as affected by Ultraviolet exposure time during	
	different experimental periods.	45
6	Egg mass (g) of Silver Montazah and Matrouh layers	
	as affected by Ultraviolet exposure time during	
	different experimental period.	47
7	Egg production number (%) of Silver Montazah and	
	Matrouh layers as affected by Ultraviolet exposure	
	time during different experimental periods.	49
8	External egg quality of Silver Montazah and Matrouh	
	layers as affected by Ultraviolet exposure time during	
	different experimental periods.	54
9	Internal egg quality of Silver Montazah and Matrouh	
	layers as affected by Ultraviolet exposure time during	
	different experimental periods.	59

10	Effect of Ultraviolet exposure time on plasma calcium	
	and phosphorus of Silver Montazah and Matrouh	
	strains.	64
11	Effect of Ultraviolet exposure time on plasma Protein	
	of Silver Montazah and Matrouh strains.	64
12	Effect of Ultraviolet exposure time on some plasma	
	hormones of Silver Montazah and Matrouh strains.	65
13	Effect of Ultraviolet exposure time on Transaminases	
	activity, Uric acid and Creatine levels of silver	
	Montazah and Matrouh strains.	65
14	Effect of Ultraviolet exposure time on Hemoglobin	0.5
17	concentration, red blood cells count and packed cell	
	volume of silver Montazah and Matrouh strains.	68
15	Effect of Ultraviolet exposure time on White blood	00
13	cells differential count of silver Montazah and	
	Matrouh strains.	69
16		09
16	Effect of Ultraviolet exposure time on Immune	71
	responses of Silver Montazah and Matrouh strains.	71
17	Litter analysis of Silver Montazah and Matrouh strains	
	as affected by Ultraviolet Exposure Time at 40 weeks	
	of ages.	74
18	Litter bacterial count of Silver Montazah and Matrouh	
	strains as affected by Ultraviolet Exposure Time at 40	
	weeks of ages.	74