

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Amyloid A in serum and ascetic fluid as a marker of spontaneous bacterial peritonitis

Thesis

Submitted in Partial Fulfillment for the Requirement of Master Degree

In Internal medicine

By

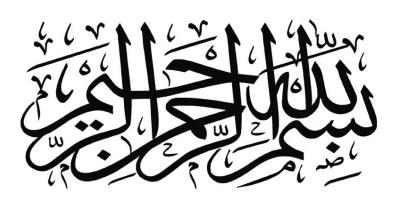
Adnan Mohamed Nagy Abdel Moneim Daif

M.B., B.CH - Ain Shams University

Supervisors

Prof. Dr. Essam Bayoumy Mohamed

Professor of Internal medicine Faculty of Medicine - Ain Shams University


Dr. Sarah Abdel Kader El-Nakeep

Assistant Professor of Internal medicine Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed El Ghandour

Lecturer of Internal medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2021

قَالُوا شُبْحًانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنْكَ أَثْتَ الْعَلِيمُ الْحَكِيمُ إِنْكَ أَثْتَ الْعَلِيمُ الْحَكِيمُ

صَيِّكَ قِالله العَظِيمر

سورة البقرة آية ٣٢

Acknowledgments

First of all, and above all, thanks to **ALLAH**, who gave me countless blessings. Without his blessings, this work would never be completed.

I would like to express my deepest gratitude and sincere appreciation to, **Prof Dr. Essam Bayoumy**Mohamed, Professor of Internal medicine - Faculty of Medicine - Ain Shams University for faithful supervision, guidance, continuous encouragement and stimulating interest throughout the course of research and useful comments during the writing of my thesis.

My deepest appreciation goes to **Dr. Sarah Abdel Kader El-Nakeep,** Assistant Professor of Internal medicine, Faculty of Medicine - Ain Shams University for cooperation, encouragement and continuous support, kind advice. He kindly supervised me and reviewed all the details of the work.

Special thanks to **Dr. Ahmed Mohamed El Ghandour,** Lecturer of Internal medicine, Faculty of Medicine - Ain Shams University for endless patience, wise opinions and precious time and effort that made this work possible.

I'd like to dedicate this work to my lovely family; without them I'm nothing.

Contents

Contents	Page	
List of Tables	II	
List of Figures	III	
List of Abbreviations	IV	
Abstract		
Introduction	1	
Aim of the Work	5	
Review of Literature	6	
Chapter 1: Spontaneous bacterial peritonitis	6	
Chapter 2: Serum amyloid A	30	
Chapter 3: Diagnostic value of serum and ascitic fluid	53	
Amyloid A in SBP	55	
Patients and Methods	57	
Results	65	
Discussion		
Summary	88	
Conclusion	91	
Recommendations	92	
References	93	
Arabic summary	١	

LIST OF TABLES

Table NO.	Table of review	page
(1)	SBP and other varieties of ascitic fluid infection	7
(2)	Causative microorganisms of spontaneous bacterial peritonitis, bacterascites and secondary peritonitis	10
(3)	Clinical setting of SBP, related definitions and commentary	13
(4)	Symptoms and signs of spontaneous bacterial peritonitis and its variants	13
(5)	SAA receptor interactions	52
	Tables of results	
(1)	Comparison between studied groups as regard demographic data	65
(2)	Comparison between studied groups as regard examinations	67
(3)	Comparison between studied groups as regard CBC	69
(4)	Comparison between studied groups as regard Liver function tests	72
(5)	Comparison between studied groups as regard amyloid	74
(6)	Comparison between studied groups as regard CRP	76
(7)	Roc curve analysis for values of serum and ascetic amyloid diagnosis of SBP patients	77

LIST OF FIGURES

Figure NO.	Figures of review	Page
(1)	Pathogenesis of SBP	11
(2)	Evidence-based algorithm for evaluation of at-risk patients, diagnosis and management of SBP	29
(3)	a Consensus amino acid sequence for human SAA (SAA1 shown although variants are recognized as well) b Comparison of SAA sequences in different organisms. Conserved residues noted in boxes. (USCS Genome Browser [GRCh38/hg38] Assembly)	36
(4)	Reported amino acid variants for SAA1 and SAA2 in humans. Underlined regions appear invariant	37
(5)	a Monomeric three-dimensional structure of SAA1.1. Note 4 α-helices 1 (aa 1-27), 2 (aa 32-47), 3 (aa 50-69), 4 (aa 73-88) and C-terminal tail (aa 89-104). b Proposed model for SAA interaction on HDL surface showing potential binding sites to receptors and other molecules	42
(6)	Proposed relationships between cytokines, chemokines and participating cells in APR consistent with current data	45
	Figures of results	
(1)	Comparison between studied groups as regard age	66
(2)	Comparison between studied groups as regard examinations	68
(3)	Comparison between studied groups as regard WBCs	70
(4)	Comparison between studied groups as regard TLC	70
(5)	Comparison between studied groups as regard Neutrophils	71
(6)	Comparison between studied groups as regard Albumin	73
(7)	Comparison between studied groups as regard Serum amyloid A	74
(8)	Comparison between studied groups as regard Ascetic amyloid	75
(9)	Comparison between studied groups as regard CRP	76
(10)	Roc curve analysis for values of serum and ascetic amyloid diagnosis of SBP patients	77

List of Abbreviations

AFLAC	Ascitic fluid lactoferrin
APP	acute phase protein
APR	the acute phase response
A-SAA	Acute-phase reactant serum amyloid
AUO	amyloid of unknown origin
C/EBP	CCAAT/enhancer-binding protein
CNNA	culture-negative neutrocytic ascites
CRP	C-reactive protein
DIC	disseminated intravascular coagulation
DRE	distal response element
EDTA	ethylene diamine tetraacetic acid
LDIII	ctifyiene diamine tetradectic deld
fMLP	formyl-methionyl-leucyl-phenylalanine
GRE	glucocorticoid-responsive elements
HDL	high-density lipoprotein
HMG1	high mobility group 1 box
IFN-γ	Interferon-γ
IL-1β	Interleukin-1β
LDL	low-density lipoprotein
M1	mediate feedback inhibition
MDSC	myeloid-derived suppressor cells
MMP	matrix metalloproteinase
MNB	
NLR	Neutrophil-to-lymphocyte ratio
NSBB	namely nonselective beta-blocker
PAMPS	Pattern recognition receptors on cell surfaces
PCR	
PMN	polymorphonuclear
PPI	Proton pump inhibitors
RAGE	receptor for advanced glycation end products
SAA	Serum amyloid A
SAAG	serum-ascites albumin gradient
SAF	SAA activating factor
SBP	Spontaneous Bacterial Peritonitis
SEF	SAA3 enhancer factor
SIRS	Systemic Inflammatory Response
SNP	single nucleotide polymorphism

TLR2	Toll-like receptor 2
TNF	tumor necrosis factor
US	ultrasound

ABSTRACT

Background; Diagnosis of Spontaneous Bacterial Peritonitis (SBP) depends mainly on ascetic fluid culture which may be negative in spite of the clinical suggestion of SBP and high ascetic fluid neutrophilic count, Aim and objectives; to assess the role of the clinical usefulness of the Amyloid A (serum and ascetic fluid) in patients with ascites (liver cirrhosis) and as a diagnostic marker for Spontaneous Bacterial Peritonitis, Subjects and methods; This is a Case-Control study, was conducted at Internal medicine and Gastroentrology outpatient clinics and ward in Ainshams University Hospitals and Shurook Hospital, on 50 patients divided into 2 groups; (group1): included 25 patients diagnosed with liver cirrhosis and ascites with spontaneous bacterial peritonitis (SBP), (group2): included 25 control subjects diagnosed with liver cirrhosis and ascites, Result; there was high statistically significant difference between the studied groups as regard amyloid, Conclusion; Although many research works showed the role of acute phase reactant (C-reactive protein (CRP) and Serum amyloid A (SAA)) in the inflammatory process and bacterial infections, this study focused on spontaneous bacterial peritonitis and assess the role of the clinical usefulness of the Amyloid A (serum and ascetic fluid) in patients with ascites (liver cirrhosis) and as a diagnostic marker for Spontaneous Bacterial Peritonitis, Keywords; Ascitic fluid, bacterial infections, C-Reactive Protein (CRP), diagnostic marker, Serum Amyloid A (SAA), Spontaneous Bacterial Peritonitis (SBP).

INTRODUCTION

Liver cirrhosis is a severe disease of the digestive system, associated with many complications, poor prognosis, and a high rate of morbidity and mortality worldwide. The main causes of chronic liver disease include infection by hepatitis B virus and hepatitis C virus, excessive alcohol consumption, primary biliary cirrhosis, and autoimmune liver disease (*Bosch et al.*, 1999).

Chronic liver disease frequently progresses to liver cirrhosis, following different processes that involve liver cell degeneration and extensive necrosis (Lee et al., 1997).

Cirrhosis is characterized by advanced fibrosis, scarring, and formation of regenerative nodules leading to architectural distortion. In the past cirrhosis was generally thought to be irreversible but recent studies have shown that treatments aimed at the underlying cause especially in earlier stages of the disease can improve or even reverse fibrosis (*Salman et al.*, 2014).

Ascites is the most common complication of cirrhosis (*Ginés et al.*, 1987). It is also the most common complication that leads to hospital admission (*Lucena et al.*, 2002). Approximately 15% of the patients with ascites will die in one year and 44% will die in five years (*Groszmann et al.*, 2004).

Ascites is defined as accumulation of more than 25 ml of fluid in the peritoneal cavity. In Western countries, development of ascites is in 75% of cases due to underlying cirrhosis but other less common etiologies of ascites such as malignancy, congestive heart failure, Budd Chiari syndrome, tuberculosis and pancreatitis should be considered – especially if ascites is the first presenting symptom (*Julie et al.*, 2015).

Ascites is transudative and contains agents with a low immune activity, providing a good environment for pathogen growth. The risk factors for the incidence and mortality of patients with spontaneous bacterial peritonitis (SBP) have been comprehensively described. A high bilirubin level, a low ascitic fluid protein concentration, and an episode of variceal haemorrhage are strongly associated with SBP occurrence (*Dever et al.*, 2015).

Spontaneous peritonitis is one of the most common infectious complications, with mortality from 10% to 46% at 1 year in cirrhotic patients with ascites (*Chun-Hong Huang et al.*, 2019).

Spontaneous bacterial peritonitis is the most frequent bacterial infection in patients with cirrhosis. The reported incidence varies between 7% and 30% in hospitalized patients with cirrhosis and ascites (*Sebastián et al.*, 2019).

The factors that predisposes cirrhotics to infections are not well defined but following mechanism have been suggested (1) portal hypertension results in creation of porto-systemic anastomosis, diverting blood that would normally go to the liver and thus impairing detoxification; (2) dysfunction of reticuloendothelial system; (3) impaired neutrophil phagocytosis; and (4) bacterial translocation resulting from bacterial overgrowth and intestinal barrier dysfunction (*Salman et al.*, 2014).

Commonly used diagnostic parameters like C-reactive protein and Systemic Inflammatory Response (SIRS) criteria have limited value secondary to decreased number of baseline polymorphnuclear leucocytes, elevated heart rate at baseline, baseline hyperventilation and blunted elevation of body temperature. This can delay diagnosis and worsen outcomes thus a high level of suspicion is warranted (*Cazzaniga et al.*, 2009 and Levy et al., 2010).

Serum amyloid A (SAA) plays a critical role in acute or chronic and is used in clinical laboratories as an indicator of inflammation. The elevated SAA is closely related to inflammation-mediated diseases, such as liver diseases, autoimmune diseases, metabolism-related diseases, amyloidosis, and tumors (*Liu Q et al., 2019*).

Serum amyloid A (SAA) protein is a major acute phase protein (APP), which belongs to the apolipoprotein family (*Lannergard et al.*, 2003). Serum amyloid A (SAA) are associated with high-density lipoprotein (HDL) in plasma. Different isoforms of SAA are expressed constitutively (constitutive SAAs) at different levels or in response to inflammatory stimuli (acute phase SAAs). These proteins are produced predominantly by the liver (*Uhlar et al.*, 1999).

SAA was also found as one of the major acute-phase proteins that are produced in large quantities by hepatocytes and released to blood circulation in response to trauma, infection, late-stage malignancy and severe stress (*Yu Fan et al.*, 2019).

During the acute phase response (APR), many cytokines induce its production by hepatocytes mainly but extrahepatic production has also been documented. For many years, SAA was a protein without function, but today is known that, in the course of acute inflammation, it stimulates the immune cell chemotaxis and cytokines production, inhibits bacterial