

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Dexmedetomidine versus Fentanyl as Adjuvant to Propofol Total Intravenous Anesthesia during Endoscopic Retrograde Cholangial-Pancreatography Procedure

AThesis

Submitted for partial fulfillment of Master degree in Anesthesiology, Intensive Care and Pain Management

By

Nyanriak Thon Aguer

M.B.B.Ch., Faculty of Medicine, University of Bahr El Ghazal, Khartoum – Sudan

Under Supervision of

Prof. Dr. Mostafa Kamel Reyad

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Sherif George Anis

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mostafa Gamaledin Mahran

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to **God**, the **Most Beneficent** and **Merciful**, Who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Dr. Mostafa Kamel Reyad,** Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Assist. Prof. Dr. Sherif George Anis,**Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Mostafa Gamaledin Mahran,** Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Endoscopic Retrograde Pancreatography	6
Sedation & Analgesia during endoscopic procedures	13
Pharmacology of Dexmedetomidine	36
Patients and Methods	59
Results	62
Discussion	84
Conclusions and Recommendation	89
Summary	91
References	93
Arabic Summary	

List of Abbreviations

466r. Full-term :Advanced Cardiovascular Life Support ACLS ASA :American Society of Anesthesiologists ASA : American Society of Anesthesiologists AUS : Abdominal ultrasound **RP** : Blood pressure : Cyclic adenosine monophosphate cAMP **CBD** :Common bile duct :Cerebral blood flow velocity **CBFV CNS** :Central nervous system COE :Cerebral oxygen extraction CT : Computed tomography **CYP** : Cytochrome P450 EDTA :Disodium edetate **ERCP** : Endoscopic retrograde cholangio-pancreatography **ERP** : Endoscopic pancreatography : Endoscopic ultrasound EUS GABA : Gamma aminobutyric acid : Guanosine diphosphate **GDP** : Gastrointestinal GI : Guanosine-5'-triphosphate (GTP GTP HR : Heart rate

ICP :Intracranial pressure

ICU : Intensive care unit

IUPAC : International Union of Pure and Applied Chemistry

IV : Intravenous

MAP : Mean arterial pressure

MPD : Main pancreatic duct

NPO : Nothing by Mouth Guidelines

PEP : Post-ERCP pancreatitis

PRIS : Propofol Infusion Syndrome

RR : Respiratory rate

SD : Standard deviation

SPO₂ : Oxyhemoglobin saturation

SPSS : Statistical package for social science

List of Tables

Table No.	Title	Page No.
Table (1):	Sedation levels	17
Table (2):	Recommendations for choice sedation type	
Table (3):	Indications for sedation/analgesia	20
Table (4):	Midazolam	21
Table (5):	Meperidine	22
Table (6):	Fentanyl	22
Table (7):	Flumazenil	23
Table (8):	Naloxone	23
Table (9):	Recommendations for using sed drugs	
Table (10):	Recommendations for propofol	27
Table (11):	Recommendations for sedation recomplications	
Table (12):	Modified Aldrete scale	34
Table (13):	Recommendations for sed monitoring	
Table (14):	Age distribution among the groups.	
Table (15):	Comparison between the study granger regarding demographic status	-
Table (16):	Comparison between the study granger regarding clinical characteristics	_

Table (17):	Comparison between the study groups regarding pre-operative hemodynamic data in the studied groups	69
Table (18):	Comparison between the study groups regarding Intraoperative hemodynamic data in the studied groups	73
Table (19):	Comparison between the study groups regarding cognitive period (RAMSAY SEDATION SCORE RSS 1-6)	76
Table (20):	Comparison between the study groups regarding Postoperative hemodynamic data in the studied groups	77
Table (21):	Comparison between the study groups regarding complications.	80
Table (22):	Comparison between the study groups regarding discharge and Satisfy status	82

List of Figures

Figure No	o. Sitle	Page No.
Figure (1):	Box-plot showing difference in among the study groups	_
Figure (2):	Comparison between the study g regarding gender	_
Figure (3):	Box-plot showing comparison betthe study groups regarding claracteristics	inical
Figure (4):	Box-plot showing difference betthe study groups regarding sy blood pressure	stolic
Figure (5):	Box-plot showing difference betthe study groups regarding diablood pressure	stolic
Figure (6):	Box-plot showing difference better the study groups regarding main as pressure	rterial
Figure (7):	Box-plot showing difference betthe study groups regarding heart ra	
Figure (8):	Box-plot showing difference between study groups regarding respiratory re	
Figure (9):	Box-plots showing difference be the study groups regarding systolic pressure 10, 20. 30 min. after induct	blood
Figure (10):	Box-plots showing difference betthe study groups regarding dia	

	blood pressure 10, 20. 30 min. after induction.	75
Figure (11):	Box-plots showing difference between the study groups regarding MAP 10, 20. 30 min. after induction.	75
• ,	Comparison between the study groups regarding RSS1-6.	76
Figure (13):	Box-plot showing difference between the study groups regarding systolic blood pressure postoperative.	78
Figure (14):	Box-plot showing difference between the study groups regarding diastolic blood pressure postoperative	78
	Box-plot showing difference between the study groups regarding MAP postoperative.	79
_	Comparison between the study groups regarding complications.	81
• ,	Comparison between the study groups regarding discharge status	83

Introduction

nsuring adequate sedation, analgesia and the patient's clinical stability by appropriate monitoring during endoscopic procedures has become extremely important over the last 10 years (*Hinkelbein et al.*, 2018).

Various types of sedation and analgesia technique have been used during endoscopy procedures.

Providing an adequate regimen of sedation/analgesia might be considered an art, influencing several aspects of endoscopic procedures: the quality of examination, the patient's cooperation and the patient and physician's satisfaction with sedation (*Hinkelbein et al.*, 2018).

The properties of a model sedative agent for endoscopy would include rapid onset and offset of action, analyseic and anxiolytic effects, ease of titration to desired level of sedation, rapid recovery and excellent safety profile.

Therefore, there is an impulse for development of new approaches to endoscopic sedation (*Lin*, 2017).

Endoscopic retrograde cholangio-pancreatography (ERCP) is commonly used in the management of many pancreatobiliary disorders. ERCP is the ideal method for extraction of common bile duct stones; it reduced the need for the more invasive surgical

procedures associated with high morbidity particularly in old age patients. ERCP with stent placement can be very effective for palliation of obstruction jaundice in pancreatic cancer patients (*Fanti and Teston*, 2018).

Endoscopy remains an unpleasant experience for most patients, the purpose of sedation in these patients is to relieve anxiety, discomfort or pain, and diminish memory of the events.

Conscious sedation enables patients to maintain their response to verbal and tactile stimuli without losing cardio-vascular and ventilatory function.

The anaesthetic drugs that are usually used include benzodiazepines, ketamine, fentanyl, propofol, dexmedetomidine etc. Each class of anaesthetic drugs has different combination of anxiolytic, hypnotic, amnestic, and analgesic effects.

Selection of the most appropriate medication for specific patient requires consideration of many factors such as drug interaction.

The ideal sedative is free serious adverse effects; does not accumulate with repeated dosing.

In fact, most complications in GI endoscopy are related to sedation; including cardiopulmonary events such as

hypoxemia, hypoventilation, airway obstruction, apnoea, arrhythmia, hypotension, and vasovagal episodes.

The introduction different and availability of pharmaceutical agents such as propofol, fentanyl, dexmedetomidine allow rapid induction of anaesthesia while enabling rapid recovery. Dexmedetomidine is a stereoisomer of medetomidine. It is a highly selective α 2-agonist; eight times higher specificity for receptors compared with clonidine. It seems to have better hemodynamic parameters. It has a perioperative sedative, analgesic and anxiolytic properties similar to benzodiazepines but being $\alpha 2$ adrenoceptor it has less side effect at doses >0.5µg/kg this effect is dose- dependent. Dexmedetomidine is not a powerful antiemetic. It seems to be an alternative option for sedation during endoscopic outpatient procedures.

Propofol is a powerful sedative that has gained the role as the' gold standard 'for moderate to deep procedural sedation because of its rapid onset and termination of action, and the high level of satisfaction achieved among patients and physicians. Its most disadvantages is the risk of rapid change from conscious to deep sedation with the possibility of respiratory depression or airway obstruction leading to hypoxemia and cardiovascular depression.