

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Histological Study on the Potential Role of Exosomes Released from Mesenchymal Stem Cells on Healing of Cutaneous Wound in Adult Male Albino Rats

Thesis

Submitted for Partial Fulfillment of Master's Degree in Histology and Cell Biology

Presented by

Asmaa Ali Mohamed Ahmed

MBBCH

Demonstrator of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Manal Shaaban Hafez

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Prof. Dr. Ghada Galal Hamam

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Dr. Gehan Abd ElKhalek Ibrahim

Lecturer of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Histology and Cell Biology Department
Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, thanks to Allah the kindest and the most merciful to whom I relate any success in achieving any work in my life.

I would like to express my sincere thanks and gratitude to **Prof. Dr. Manal Shaaban Hafez,** Professor of Histology and cell biology, Faculty of Medicine, Ain Shams University, for her kind supervision, valuable advice, and consistent encouragement and support. It was such a great honor to work under her guidance.

I am particularly very grateful and appreciative to **Prof. Dr. Ghada Galal Hamam,** Professor of Histology and cell biology, Faculty of Medicine, Ain Shams University, for her great help, sincere efforts, and continuous encouragement and support throughout the journey, which made the completion of this work much easier. It was a pleasure working under her supervision.

I would further like to thank **Dr. Gehan Abd ElKhalek Ibrahim,** Lecturer of Histology and Cell Biology, Faculty of
Medicine, Ain Shams University for her great help and
precious instructions throughout this work.

Finally, I would like to express my sincere gratitude, love, respect, and appreciation to all my professors and my colleagues for their continuous support till this work was completed.

Asmaa Ali Mohamed Ahmed

Dedication

Words cannot describe my love, thanks, gratefulness, and respect to my parents, my brothers, and my fiancé for their warm kindness and genuine support. Without their care, patience, encouragement, and support, I would have never achieved any success. To all of them, I dedicate my work.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Diagrams	iii
List of Tables	iv
List of Histograms	v
Abstract	vi
Introduction	1
Aim of the Work	3
Review of Literature	4
Materials and methods	33
Results	63
Discussion	140
Conclusions	156
Recommendations	157
Summary	158
References	164
Arabic Summary	

List of Abbreviations

Abb.	Full term
ANOVA	One-way analysis of variance
BM	Bone marrow
CXC	Cysteine-X-Cysteine
DAB	Diaminobenzidine tetrahydrochloride
DMEM	Dulbecco's modified Eagle's medium
ECM	Extracellular matrix
EGF	Epidermal growth factor
ESCs	Embryonic stem cells
EVs	Extracellular vesicles
FBS	Fetal bovine serum
FGFs	Fibroblast growth factors
H&E	Haematoxylin and eosin
HB-EGF	Heparin binding epidermal growth factor
HGF	Hepatocyte growth factor
HRP	Horse-radish peroxidase
IGF-1	Insulin growth factor-1
IL-1	Interleukin-1
IL-6	Interleukin-6
ILVs	Intraluminal vesicles
INOS	Inducible nitric oxide synthase
K	Keratin
mRNA	Messenger RNA
MSCs	Mesenchymal stem cells
MVB	Multivesicular bodies
NGF	Nerve growth factor
PAS	Periodic Acid Schiff

PBS	.Phosphate buffer saline
PCNA	.Proliferating cell nuclear antigen
PDGF	.Platelet-derived growth factor
RGS	.Rat Grimace Scale
SPSS	.Statistical Package for the Social Sciences
TEM	.Transmission electron microscopy
TGF-α	.Transforming growth factor—αlpha
TGF-β	.Transforming growth factor–βeta
TNF-α	.Tumor necrosis factor-alpha
VECE	.Vascular endothelial growth factor

List of Diagrams

Diagram. N	o. Title	Page No.	
Diagrams in Review & Materials and Methods			
Diagram (1):	Showing the proposed models epithelialization skin wound		
Diagram (2):	Showing that the regeneration of hair followounding mimics the normal embry follicle development	yonic hair	
Diagram (3):	Showing multiple roles of MSCs	20	
Diagram (4):	Showing the communication between ce extracellular vesicles		
Diagram (5):	Showing the formation of MVB, microvesicles, and the content of exoson		
Diagram (6):	Showing the formation and fate of MVB the release of exosomes outside the cell.		
Diagram (7):	Showing the endocytic pathways of the EVs by recipient cells	-	
Diagram (8):	Showing the Rat Grimace Scale	41	

List of Tables

Table No	. Title	Page No.
Table (1):	Showing the mean wound size (length and v groups II and III	· · · · · · · · · · · · · · · · · · ·
Table (2):	Showing the mean epidermal thickness in groups	
Table (3):	Showing the mean dermal thickness in groups	
Table (4):	Showing the mean area percentage of collag in different groups	
Table (5):	Showing the mean number of epidermal positive nuclei in different groups	

List of Histograms

Histo. No.	Title	e F	age No.
Histogram (1):	Showing the mean wound s in groups II and III	` U	· · · · · · · · · · · · · · · · · · ·
Histogram (2):	Showing the mean epiderma and center of the wound in of different groups	H&E-stained	sections
Histogram (3):	Showing the mean derma stained sections of different		
Histogram (4):	Showing the mean area positives in Masson's trichron different groups	ne-stained sect	tions of
Histogram (5):	Showing the mean number nuclei in the epidermis of diff		1

Abstract

Introduction: Skin wounds are frequent injuries that cause heavy financial burdens at both the familial and societal levels with physical and mental suffering. Recently, the attention of researchers has been attracted to the use of exosomes derived from mesenchymal stem cells (MSCs) as a novel non-cell therapy for skin wound.

Aim: To study the potential effects of exosomes derived from MSCs on the healing of cutaneous skin wound in adult male albino rats.

Materials and methods: five weaned rats were used for isolation of exosomes. Forty-two adult male albino rats were divided into three groups: group I (control group); group II (spontaneous wound healing): in which full thickness skin wound was left for spontaneous healing, and group III (treated skin wound with exosomes): 24 hours after generation of skin wound, rats received single intravenous injection of 1ml phosphate buffer saline containing purified exosomes. Each group was subdivided into two subgroups; subgroup A and subgroup B, where skin specimens were collected after 14 days and 21 days, respectively. Exosomes were isolated from bone marrow derived-MSCs through ultracentrifugation. Then, they were characterized by transmission electron microscope. At the end of experiment, skin specimens were collected from all rats and were subjected to haematoxylin and eosin (H&E), Masson's trichrome, periodic acid schiff (PAS), and proliferating cell nuclear antigen (PCNA) immunohistochemical technique. Histo-morphometric study and statistical analysis were also done.

Results: Administration of MSCs-derived exosomes in group III showed decreased pain experienced by rats, improved wound healing, enhanced epidermal reepithelization, the regeneration of skin appendages, and better organization of newly formed collagen.

Conclusion: Intravenous injection of MSCs-derived exosomes could be effective in the healing of full thickness skin wound in adult rats.

Key words:

Exosomes, Mesenchymal stem cells, wound healing, cutaneous wound, Histology, PCNA

INTRODUCTION

Skin injuries are frequent injuries that cause heavy financial burdens at both the familial and societal levels with physical and mental suffering. Despite the presence of numerous investigations that focused on accelerating the wound healing process, definitive treatments are still currently unavailable (**Zhang et al., 2015**).

Full thickness skin injuries extend beyond both epidermis and dermis. Therefore, they are characterized by complete destruction of epithelial regenerative capacity. Healing of such wounds results in scar formation (**Mohamed et al., 2019**), which means less favorable quality of healing (**Hu et al., 2016**).

Annually, over 100 million people develop scars because of trauma or even surgeries. These scars usually lead to discomfort and pain. Scars are also associated with disfigurement, social avoidance, and depression. It may also have devastating consequences for patients, including limitation of movement, permanent disability, and poor aesthetic appearance. Surgery and laser therapy are examples of therapeutic measures for scarring. However, they have their limitations, restraining them from being widely introduced into clinical application (Wang, Hu et al., 2017; Čoma et al., 2021).