

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ROLE OF DIFFUSION WEIGHTED MRI IN IMAGING OF PANCEATIC MASSES

Thesis

Submitted for Partial Fulfillment of M.D. Degree In Radiodiagnosis

By

Doaa Abdelaziz Abdelsalam Anany

M.Sc. of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Laila Ahmed Abdelrahman

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Assistant Prof. Nivan Hany Ahmed Khater

Assistant Professor of Radiodiagnosis
Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2021

List of Contents

	Title Page
•	List of Abbreviations
•	List of Tables
•	List of Figures IV
•	Introduction
•	Aim of the Work
•	Review of Literature
	- Chapter (1): Anatomy of the Pancreas 5
	- Chapter (2): Pathology of Pancreatic Lesions
	- Chapter (3): Impact of Diffusion weighted imaging in diagnosis of pancreatic masses 49
•	Patients and Methods
•	Results
•	Discussion
•	Illustrative Cases
•	Summary and Conclusion
•	References
•	Arabic Summary

List of Abbreviations

ACC Acinar Cell Carcinoma

ACTH Adrenocoricotropic Hormone **ADC** Apparent Diffusion Coefficient

AIP Autoimmune Pancreatitis

ANP Acute Necrotizing pancreatitis

AUC Area Under the ROC Curve

BD Branch Duct

CNR Contrast-to-Noise Ratio

CP Chronic Pancreatitis

DW Diffusion-Weighted

EPI Echo-Planar Imaging

ERCP Endoscopic Retrograde Cholangio-

pancreaticography

FN False Negative

FOV Field-of View

FP False Positive

IPMN Intraductal Papillary Mucinous

Neoplasm

IPMNs Intraductal Papillary Mucinous

Neoplasms

IR Inversion Recovery

IV Intravenous

MCNs Mucinous Cystic Neoplasms

MD Main Pancreatic Duct-type

MEN1 Multiple Endocrine Neoplasia type 1MEN1 Multiple Endocrine Neoplasia Type 1

MPD Main Pancreatic Duct
MR Magnetic Resonance

List of Abbreviations

MRCP Magnetic Resonance Cholangio-

pancreatography

NPV Negative Predictive Value

PanIN Pancreatic Intraepithelial Neoplasia

PanNET Pancreatic Neuroendocrine Tumor

PNENs Pancreatic Neuroendocrine Neoplasms

PPV Positive Predictive Value

ROC Receiver Operator Characteristic

ROI Region of Interest

SCNs Serous Cystic Neoplasms

SMA Superior Mesenteric Artery

SMV Superior Mesenteric Vein

SPNs Solid Pseudopapillary Neoplasms

SSFSE Single-Shot Fast Spin-Echo

STIR Short Tau Inversion-Recovery

THRIVE T1-weighted High-Resolution

Isotropic Volume Examination

TI Inversion Time

TN True Negative

TP True Positive

VHL Von Hippel-Lindau

VP Ventral Pancreatic

List of Tables

Table No.	Title Pag	е
Table (1):	Exocrine secretions of pancreas 19)
Table (2):	Demographic features of the studied group	Ļ
Table (3):	Clinical presentation of the studied group	
Table (4):	Pathological analysis of the studied group	7
Table (5):	Morphological analysis of the studied group)
Table (6):	Diffusion pattern of the studied group)
Table (7):	Mean and normalized ADC values for benign and malignant groups. Data are expressed in median, interquartile range and range	-
Table (8):	The sensitivities, specificities, positive predictive values (PPV) and negative predictive values (NPV) of the optimum threshold values of the mean and normalized ADC for the differentiation of the malignant group from the benign group82	2

List of Figures

Figure No.	Title Page	Ļ
Fig. (1):	Drawings illustrate the normal pancreatic development 6	
Fig. (2):	Retroperitoneal compartments7	
Fig. (3):	Parts and relations of the pancreas 8	3
Fig. (4):	Anterior relations of the pancreas 11	
Fig. (5):	Posterior relations of the pancreas11	
Fig. (6):	Normal pancreatic ductal anatomy	
Fig. (7):	Arterial supply of the pancreas 14	
Fig. (8):	Venous drainage of the pancreas 15	
Fig. (9):	Lymphatic drainage of the pancreas16	
Fig. (10):	Normal MRI appearance of the pancreas	
Fig. (11):	Bifid configuration of pancreatic ducts	
Fig. (12):	Location of the major papilla 19	
Fig. (13):	MRCP images of variations in pancreatic duct course	
Fig. (14):	Drawings illustrate variation in pancreatic duct configuration 22	
Fig. (15):	MRCP image of typical inverted S-shape of duct of Santorini (S) in ansapancreatica	
Fig. (16):	Annular pancrease24	
Fig. (17):	MRI images of ectopic pancreatic tissue	

List of Figures (Continued)

Figure No.	Title Page	•
Fig. (18):	Bifid tail of the pancreas27	
Fig. (19):	Dorsal pancreatic agenesis	
Fig. (20):	Accessory pancreatic lobe29	
Fig. (21):	Variations of pancreatic contours 30	
Fig. (22):	Von Hippel–Lindau disease31	
Fig. (23):	Pancreatic focal fatty infiltration33	
Fig. (24):	Illustration of the different types of IPMNs	
Fig. (25):	Distribution of ductal adenocarcinoma in the pancreas 41	
Fig. (26):	SCN (microcystic type) on MRI51	
Fig. (27):	Mucinous cystadenoma 52	
Fig. (28):	Main-duct IPMN with moderate dysplasia	
Fig. (29):	Solid pseudopapillary epithelial neoplasm	
Fig. (30):	Poorly differentiated pancreatic ductal adenocarcinoma	
Fig. (31):	Pancreatic ductal adenocarcinoma with metastases	
Fig. (32):	Nonfunctioning PNET60	
Fig. (33):	Pancreatoblastoma62	
Fig. (34):	Acute pancreatitis on DWI64	
Fig. (35):	Pancreatic pseudocyst on DWI 65	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (36):	Chronic pancreatitis on MR	67
Fig. (37):	Bar chart showing the number of lesions involving the different anatomical zones of the pancreas	t
Fig. (38):	Pie chart showing the contribution of the various types of benign pancreatic lesions	1
Fig. (39):	Pie chart showing the contribution of the different types of malignant pancreatic lesions	t
Fig. (40):	Box and whisker plot displaying the mean and normalized ADC values in benign and malignant groups	ı
Fig. (41):	Receiver operating characteristic curve analyses	
Fig. (42):	Scatter plot showing the mean ADC values for all cystic pancreation lesions	2
Fig. (43):	Scatter plot showing the normalized ADC values for all cystic pancreation lesions	
Fig. (44):	Scatter plot showing the mean ADC values for all solid pancreatic lesions	
Fig. (45):	Scatter plot showing the normalized ADC values for all solid pancreation lesions	

List of Figures (Continued)

Figure No.	Title Page
Fig. (46):	Images of pancreatic ductal adenocarcinoma
Fig. (47):	Benign pancreatic solid pseudopapillary tumer 103
Fig. (48):	Side branch IPMNs105
Fig. (49):	Pancreatic tail pseudocyst 107
Fig. (50):	Pancreatic pseudocyst109
Fig. (51):	Mucinous cystadenoma with no dysplasia111
Fig. (52):	Poorly differentiated pancreatic head ductal adenocarcinoma with hepatic metastases
Fig. (53):	Neuro endocrine tumor (NET) 115
Fig. (54):	Pancreatic tail splenule 117
Fig. (55):	Acute necrotizing pancreatitis 119
Fig. (56):	Pancreatic adenocarcinoma with hepatic deposits

INTRODUCTION

Pancreatic cancer is the fourth most common cause of cancer-related mortality worldwide, as the five-year survival rate is less than 5% and the mortality rate has not declined over the last few decades. Therefore, pancreatic cancer seems to remain one of the greatest challenges in the fight against cancer in the 21st century. One of the main causes of the poor prognosis of pancreatic cancer is the difficulty of its early diagnosis. As pancreatic cancer typically develops with few symptoms in the early stage and there are not many specific, well-known risk factors a side from smoking and family history, the appropriate screening and early diagnosis of pancreatic cancer is quite challenging. Therefore, only 10% to 20% of diagnosed patients have a chance of successful resection and possible cure, and even in patients with resectable disease, the survival rate is only 23% (Eun and Jeong, 2014).

One crucial consideration in the treatment of patients suspected of having pancreatic tumors is how to proceed diagnostically. So far, ultrasonography (US) and contrastenhanced computed tomography (CT) have been widely used to diagnose pancreatic pathology. However, in previous series, differentiating benign lesions from pancreatic cancer was considerably difficult. This dilemma is clinically relevant and to overcome this dilemma, the development of sensitive and specific imaging modalities is highly desirable (*Hänninen et al.*, 2002).

-Introduction

Magnetic resonance imaging (MRI) has a well-established role in the evaluation of patients with pancreatic masses. MR diffusion-weighted imaging (DWI) is a technological improvement of MRI. DW sequence can evaluate the diffusion of water molecules (Brownian motions) within biological tissues. All factors that tend to narrow the extracellular compartment or modify water exchanges through cell membranes lead to an impairment of the diffusion of water molecules. Tissues with restriction of water diffusion present high signal intensity on DW images and low signal intensity on the apparent diffusion coefficient (ADC) map, diffusion restriction can be also quantified through the calculation of the ADC value within specific regions of interest (ROIs) (*Riccardo et al., 2015*).

In general, rapidly growing tumors are characterized by increased tissue cellularity and cellular density. With the increased amount of diffusion barriers, the motion of diffusion capacity is restricted and water diffuses from extracellular components to the intracellular space, resulting to low ADC values and high signal intensity on DWI. However high ADC values are attributed to the free motion of water molecules in fluid-rich biologic environments (*Thomas et al.*, 2012).

Diffusion-weighted magnetic resonance imaging has been used for diagnosis of diseases of the central nervous system for two decades being a particularly important tool in the diagnosis of ischemic stroke and the musculoskeletal system for one decade (*Bruegel et al.*, 2008).

During recent years, DWI of diseases of the lower abdomen, e.g. prostate, urinary bladder, uterus and rectum,

-Introduction

has presented promising results. DWI of the upper abdomen has been a technical challenge due to respiration, bowel peristalsis, blood flow and long acquisition times (*Ichikawa et al.*, 2007).

The implementation of ultrafast imaging techniques, such as parallel imaging, has made DWI of the upper abdomen a feasible option and has been found to be useful in differentiation of malignant from benign liver lesions. Many studies indicate that DWI is promising also in pancreatic imaging (*Matsuki et al.*, 2007).