

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Design and Production Engineering Department

Ageing Behavior of Ductile Iron with Dual Matrix Structure

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering (Design and Production Engineering)

 $\mathbf{B}\mathbf{v}$

Ali Abdelmonem Ali Mousa

Bachelor of Science in Mechanical Engineering

(Design and Production Engineering)

Faculty of Engineering, Ain Shams University, 2021

Supervised by

Prof. Ahmed Mohamed Moneeb Elsabbagh Assoc. Prof. Mohamed Soliman Cairo - (2021)

Ain Shams University-Faculty of Engineering Design and Production Engineering Department

Ageing Behavior of Ductile Iron with Dual Matrix Structure

By

Ali Abdelmonem Ali Mousa

B.Sc. in Mechanical Engineering (Design and Production Engineering)

Faculty of Engineering – Ain Shams University

EXAMINERS COMMITTEE

Prof. Ayman Mohamed Fathy	•••••
Central Metallurgical Research Institute	
Prof. Mohamed Ahmed Taha	
Design and Production Engineering Dept. Faculty of Engineering – Ain Shams University	
Prof. Ahmed Mohamed Moneeb Elsabbagh	
Design and Production Engineering Dept. Faculty of Engineering – Ain Shams University	
Assoc. Prof. Mohamed Soliman	
Institute of Metallurgy. Clausthal University of Technology.	

Date:31/7/2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering (Design and Production Engineering), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ali Abdelmonem Ali Mousa

Signature	
Date	

Researcher Data

Name : Ali Abdelmonem Ali Mousa

Date of birth : 1/10/1990

Place of birth : Banha, Egypt.

Last academic degree : B.Sc. in Mechanical Engineering

Field of specialization : Design and Production Engineering

University issued the degree : Ain Shams University

Date of issued degree : May 2015

Current job : Demonstrator, Design and

Production Engineering
Department, Faculty of
Engineering, Ain Shams
University at Cairo, Egypt.

Acknowledgement

At the final stage towards my MSc degree, I would like to acknowledge so many people and organizations that have made this journey possible. First of all, I would like to express my sincere thanks to my supervisor Prof. Dr. Ahmed Moneeb Elsabbagh, for his continuous support in every way during these years.

I would like to thank also Dr. Mohamed Soliman for introducing me to the world of the ductile iron with dual matrix, for sharing with me his knowledge and for his guidance throughout the present study.

This thesis would not be what it is without the help and cooperation of the colleagues of the Design and Production Engineering Department, Faculty of Engineering, Ain Shams University.

I owe thanks to Dr. Mohamed Kamal and Eng. Mahmoud for providing the facilities of the steel laboratory at CMRDI-Egypt, and help in the dilatometric measurements.

Finally, my gratitude goes to my family and my wife for their strong support during these busy years.

List of Publications

Certificate

Citation: Abdelmonem, A.; Soliman, M.; Palkowski, H.; Elsabbagh, A. Aging Behavior of Intercritically Quenched Ductile Iron. Metals **2021**, 11, 897. https://doi.org/10.3390/met11060897

Abstract

Although, extensive ageing and strain ageing (bake hardening, BH) studies have been carried out on dual phase steels, the ageing behavior of the dual matrix structure (DMS) ductile iron (DI), as a potential way to improve its mechanical properties, has not been addressed until now. This thesis was designed to study the ageing behavior of the DMS-DI with ferrite — martensite matrix structure.

For produced the ferrite – martensite matrix, the intercritical region of the as-cast ductile iron with a chemical composition of 3.39 % C, 2.63 % Si, 0.33 % Mn, 0.03 % Mg, 0.01 % S, and 0.05 % P was calculated with the empirical equations and ThermoCalc software. To confirm the resulting calculations, the intercritical region verified practically using dilatometry and partial austenitizing heat treatment cycles. After defining the intercritical region, the DMS-DI with martensite volume fraction MVF of 30 % was produced by intercritical austenitizing at 780 °C followed by quenching in water to room temperature.

Ageing treatments were carried out without pre-straining at ageing temperatures of 140, 170, and 220 °C for 2 – 10000 minutes. DMS-DI was investigated by light optical microscopy (LOM) and scanning electron microscopy (SEM) for unaged and selected samples after ageing treatments. The effect of ageing conditions (ageing temperatures and times) on the mechanical properties were investigated. Microhardness measurements for ferrite and martensite were also examined as a function of ageing conditions. The increase in yield strength YS due to ageing effect was determined.

The results indicate that the ageing conditions have a small effect on the ultimate tensile strength UTS, but the total elongation TEL after fracture displays a very high fluctuation. It is shown that the yield strength increased to a maximum value of 52 MPa (~ 13 % increase) after ageing for particular time, which is found to be dependent on the ageing temperature. The peak ageing response is followed by a decrease in yield strength, that is observed to be attributed to martensite tempering as confirmed by microhardness measurements. The results also showed that the ageing process has no significant effect on the microhardness of the ferrite phase in DMS-DI with ferrite – martensite matrix.

Keywords: Dual Matrix Structure Ductile Iron; Ageing; Precipitation, Microhardness.

Table of Contents

Statement	iii
Researcher Data	iv
Acknowledgement	V
List of Publications	vi
Certificate	vi
Abstract	vii
Table of Contents	ix
List of Figures	xiv
List of Tables	xix
Nomenclature	xx
Abbreviations	xxii
Chapter 1	1
1 Introduction	1
1.1 Overview	1
1.2 Research Gap	2
1.3 Thesis Outline	3
Chapter 2	4
2 Literature Review	4
2.1 Cast Iron	4
2.1.1 Microstructures of Cast Iron CI	5
2.1.1.1 Graphite	5
2.1.1.2 Carbide or Cementite (Fe ₃ C)	
2.1.1.3 Ferrite	
2.1.1.4 Pearlite	7

		2.1.1.5	Martensite
		2.1.1.6	Austenite8
		2.1.1.7	Bainite8
2.1	1.2	Types of	f Cast Iron CI8
2.2	Du	ctile Iron	DI8
2.2	2.1	Producti	on of Ductile Iron
2.2	2.2	Types of	f Ductile Iron DI10
		2.2.2.1	Ferritic Ductile Iron DI
		2.2.2.2	Pearlitic Ductile Iron DI
		2.2.2.3	Ferritic-Pearlitic Ductile Iron DI
		2.2.2.4	Martensitic Ductile Iron DI
		2.2.2.5	Bainitic Ductile Iron DI
		2.2.2.6	Austenitic Ductile Iron
		2.2.2.7	Austempered Ductile Iron (ADI)
2.2	2.3	Propertion	es of Ductile Iron DI
2.3	Не	at treatme	nt of Ductile Iron DI14
2.3	3.1	Basic Co	onsiderations for Heat Treatment of Ductile Iron DI 14
		2.3.1.1	Critical Temperature Ranges
		2.3.1.2	Carbon and Silicon content in the matrix16
		2.3.1.3	Graphite nodules in the matrix
2.3	3.2	Austenit	izing of Ductile Iron DI
2.3	3.3	Annealii	ng and Normalizing of Ductile Iron DI
2.3	3.4	Quenchi	ng and Tempering of Ductile Iron DI
2.3	3.5	Austemp	pering of Ductile Iron DI
2.4	Du	al Matrix	Structure DMS Ductile Iron DI
2.4	4.1	Producti	on of DI with DMS23
		2.4.1.1	First Schedule to obtain Ferrite – Martensite Matrix24
		2.4.1.2	Second Schedule to obtain Ferrite – Martensite Matrix 24
2.5	Ag	eing (Prec	ipitation Hardening) Process

2.5.1	Mechanism of Precipitation Hardening (Nonferrous Alloys)	28
2.5.2	Ageing Mechanism of Steel (Bake Hardening BH)	31
2.6 Liter	rature Divisions	34
2.6.1	Initial Studies of Particular Relevance	34
2.6.2	Ageing of Gray Cast Iron	35
2.6.3	Ageing of Ductile Iron	38
Chapter 3: Ob	jectives and Research Plan	41
Chapter 3		42
3 Objecti	ves and Research Plan	42
3.1 Thes	sis Objectives	42
3.2 Plan	of Work	43
Chapter 4: Ex	perimental Procedures	47
Chapter 4		48
4 Experii	mental Procedures	48
4.1 Intro	oduction	48
4.2 Mate	erials and Preparation of Samples	49
4.3 Chei	mical Composition analysis	50
4.4 Dete	ermination of the Intercritical Region	51
4.4.1	Empirical Equations	52
4.4.2	Thermodynamic Software	52
4.4.3	Dilatometry	52
4.4.4	Intercritical Austenitizing Heat Treatment	53
4.5 Meta	allographic characterization	53
4.5.1	Light Optical Microscopy LOM	55
4.5.2	Scanning Electron Microscopy SEM	56
4.6 Heat	Treatment cycle to achieve DMS-DI	57
4.7 Age	ing Treatment	58

4.8 Tensile Testing	58
4.9 Hardness Test	60
4.9.1 Macrohardness	60
4.9.2 Microhardness	61
4.10 Uncertainties in the Experimental Data	62
Chapter 5: Results and Discussions	63
Chapter 5	64
5 Results and Discussions	64
5.1 Introduction	64
5.2 Characteristics of the as-cast	64
5.3 The Intercritical Region	66
5.4 Microstructural Analysis	71
5.5 Mechanical Behavior and Ageing Effect	79
5.5.1 Mechanical Properties of the unaged DMS-DI	79
5.5.2 Mechanical Properties of the aged DMS-DI	80
5.5.2.1 Hardness	80
5.5.2.2 Tensile Properties	81
5.5.3 Ageing Behavior	85
5.5.4 Microhardness	86
Chapter 6	95
6 Conclusion and Future Work	95
6.1 Conclusion	95
6.2 Future Work	96
References	98
Appendices	106
Appendix A Chemical Compositions Analysis and Dilatometry Measure	ements
- •	1