

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

THERMAL ANALYSIS, SOLIDIFICATION BEHAVIOUR AND MICROSTRUCTURE OF ALUMINUM – MAGNESIUM ALLOYS WITH ADDED ZIRCONIUM AND SAMARIUM

By

Karamullah Mohamed Ahmed Eisawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
METALLURGICAL ENGINEERING

THERMAL ANALYSIS, SOLIDIFICATION BEHAVIOUR AND MICROSTRUCTURE OF ALUMINUM – MAGNESIUM ALLOYS WITH ADDED ZIRCONIUM AND SAMARIUM

By Karamullah Mohamed Ahmed Eisawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in
METALLURGICAL ENGINEERING

Under the Supervision of

Prof. Dr. Waleed A Khalifa

Prof. Dr. Mahmoud M Tash

Professor of Metallurgy
Department of Mining, Petroleum and
Metallurgical Engineering
Faculty of Engineering, Cairo University

Professor of Metallurgy
Department of Mining, Petroleum and
Metallurgical Engineering
Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

THERMAL ANALYSIS, SOLIDIFICATION BEHAVIOUR AND MICROSTRUCTURE OF ALUMINUM – MAGNESIUM ALLOYS WITH ADDED ZIRCONIUM AND SAMARIUM

By Karamullah Mohamed Ahmed Eisawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
METALLURGICAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Waleed A Khalifa	Thesis Main Advisor
Prof. Dr. Mahmoud M Tash	Advisor
Prof. Dr. Iman S El-Mahallawi	Internal Examiner
Prof. Dr. Mohamed A Waly (Central Metallurgical Research Institute)	External Examiner

Karamullah Mohamed Ahmed Eisawi **Engineer's Name:**

Date of Birth: 10/05/1994 **Nationality:** Egyptian

E-mail: karamullah.eisawi@eng.cu.edu.eg

Phone: 01141314338

Address: Ap 92, Building 20, Cairo University Professors

Residents, Giza, Egypt.

Registration Date: 1/10/2018 **Awarding Date:**/2021 Degree: Master of Science

Department: Metallurgical Engineering

Supervisors:

Prof. Waleed A Khalifa Prof. Mahmoud M.Tash

Examiners:

Prof. Waleed A Khalifa (Thesis main advisor)

Prof. Mahmoud M Tash (advisor)

Prof. Iman S El-Mahallawi (Internal examiner) Prof. Mohamed A Waly (External examiner) (Central Metallurgical Research Institute)

Title of Thesis:

THERMAL ANALYSIS, SOLIDIFICATION BEHAVIOUR AND MICROSTRUCTURE OF ALUMINUM – MAGNESIUM ALLOYS WITH ADDED ZIRCONIUM AND SAMARIUM

Key Words:

Thermal Analysis, Grain Refining, Microstructure, Sm and Zr, Al-Mg Alloy

Summary:

A series of Aluminum Magnesium alloys with high and low levels Magnesium with addition of high and low levels of Zirconium and Samarium was prepared. Thermal analysis was implemented by using thermocouple K-type to investigate the effect of Zr and Sm addition. Microstructure was examined by optical microscopy and scanning electron microscopy. It was found that intermetallic phases are transformed into Chinese script structure when adding Sm for both high and low level of Mg addition in Al-Mg alloys.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Karamullah Mohamed Ahmed Eisawi Date: .. /.. /2021

Signature:

Dedication

I dedicate this thesis to my parents. I dedicate this thesis to my father (Dr. Mohamed Eisawi) that dedicated all his life as an investment in raising us and hope this thesis to be one step towards his dream. I deeply dedicated this thesis to my mother (Mrs. Hoda Salem) that passed away in 2019. She wishes to see me with the Master degree certificate before going to the afterlife; I'm sure she is proud of me to obtain my Master degree and continue my path of teaching and research.

Acknowledgments

First and foremost, praises thanks to Allah, the Almighty, for his shower of blessings throughout my research work to complete the thesis successfully.

I would like to express my deep and sincere gratitude to my thesis supervisors, Prof. Waleed Khalifa and Prof. Mahmoud Tash, for giving me the opportunity to do research and providing invaluable guidance throughout this thesis. They have taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under their guidance.

I would like to express my heartiest gratitude to Prof. Iman El-mahallawi for her golden advises and her valuable suggestions and corrections.

I would like to thank all my instructors and colleagues who supported me through my bachelor and master's studies.

Table of Contents

DISCLAIME	R	I
DEDICATION	N	II
ACKNOWLE	DGMENTS	III
TABLE OF C	ONTENTS	IV
LIST OF TABLES		
	URES	
ABSTRACT		.XII
CHAPTER 1	: INTRODUCTION	1
1.1.	ENERGY CONSUMPTION AND FINDING ALTERNATIVES FOR STEEL	1
1.2.	THESIS OBJECTIVES	
1.3.	THESIS SCOPE	
CHAPIER 2	: LITERATURE REVIEW	
2.1.	Introduction to Aluminum	
2.2.	ALUMINUM COMPOSITIONAL GROUPING OF ALLOYS	4
2.3.	GENERAL CHARACTERISTICS OF ALUMINUM CAST ALLOY FAMILIES	
2.3.1.	Pure Aluminum (1xx)	6
2.3.2.	Aluminum – Copper (2xx)	
2.3.3.	Aluminum – Silicon – Copper (3xx)	
2.3.4.	Aluminum – Silicon (4xx)	
2.3.5.	Aluminum – Magnesium (5xx)	
2.3.6.	Aluminum – Zinc – Magnesium (7xx)	
2.3.7.	Aluminum – Tin (8xx)	
2.4.	ALUMINUM – MAGNESIUM ALLOY BINARY SYSTEM	
2.5.	MELT TREATMENT OF ALUMINUM ALLOYS	8
2.5.1.	Modification of Aluminum alloys	8
2.5.2.	Refining of Aluminum alloys	9
2.5.2.1	Effect of Titanium additions	9
2.5.2.2.	Effect of rare earth elements additions	
2.5.2.3. 2.5.2.4.	Effect of Zirconium additions Effect of other alloying elements	
2.5.2.4.	Thermal analysis during solidification	
	: EXPERIMENTAL WORK	
3.1.	INTRODUCTION	
3.2.	RAW MATERIAL SELECTION	
3.3.	CASTING PROCEDURES	
3.4.	MATERIALS CHARACTERIZATION TESTING	
3 4 1	Thermal analysis and solidification behavior	21

3.4.2.	Microstructural observation	23
CHAPTER 4	: RESULTS AND DISCUSSIONS	26
4.1.	THERMAL ANALYSIS AND SOLIDIFICATION DATA:	26
4.1.1.	Effect of Zr/Sm additions on Al-4Mg base alloy	30
4.1.2.	Effect of Zr/Sm additions on Al-8Mg base alloy	34
4.2.	MICROSTRUCTURAL CHARACTERIZATION:	
4.2.1.	Optical micrographs observations	46
4.2.2.	SEM observations	51
4.2.2.1.	Effect of Zr/Sm additions on Al-4Mg base alloy	
4.2.2.2.	Effect of Zr/Sm additions on Al-8Mg base alloy	60
4.3.	GRAIN REFINEMENT RESPONSE TO ZR AND SM ADDITI	ONS AND ITS
CORRELATIO	N WITH SOLIDIFICATION DATA	67
•••••		69
	CONCLUSIONS	
REFERENCE	ES	71

List of Tables

Table 2.1: Main alloying elements in wrought alloys designation system	5
Table 2.2: Main alloying elements in cast alloys designation system	6
Table 3.1: Chemical analysis for the high purity Aluminum and Al-10Mg maste	er alloy
	17
Table 3.2: The intended cast alloys compositions	17
Table 3.3: the prepared weights for the cast alloys	18
Table 3.4: Chemical composition for Al-4Mg and Al-8Mg base alloys with add	itions of
Zr and Sm	18
Table 4.1 Solidification data obtained for Al-4Mg base alloy with adding Zr and	d Sm .43
Table 4.2 Solidification data obtained for Al-8Mg base alloy with adding Zr and	d Sm .44
Table 4.3 Total solidification cooling rates for the experimental alloys	45
Table 4.4 Summary of the formed intermetallic phases	65
Table 4.5 Grain size measurements	68

List of Figures

Figure 1.1: Trends of aluminum weight involved in light vehicles industry along the mention time period in North America	1
Figure 1.2: Evolution of global automotive aluminum market	1
Figure 1.3: Evolution of US automotive aluminum market by application (USD Billio	
Tigure 1.3. Evolution of OS automotive arunmann market by appreciation (CSD Bink	
Figure 2.1: Al-Mg binary phase diagram	
Figure 2.2 first part of the cooling curve and its derivative where the solidification da	
are obtained [38]	
Figure 2.3: Solidification data for alloy 518.2 at cooling rate 0.4°C/s [38]	
Figure 2.4: Cooling curves showing difference in undercooling related to the effect of	
	.14
Figure 2.5: Cooling curves showing difference in eutectic temperature related to the	• • •
modification effect of Sr	15
Figure 3.1: Hierarchy of experimental casting procedure	
Figure 3.2: (a) Electrical resistance furnace setup.	
(b) melt after being added to the crucible	
(c) Temperature controller screen.	
Figure 3.3: Injecting Argon gas into the melt for entrapped gases removal	
Figure 3.4: preheating graphite mold for thermal analysis	
Figure 3.5: (a) Schematic diagram of Thermocouple K-type connected to graphite	
mold.	.22
(b) Data Translation device which is connected to computer	
(c) Setup for thermal analysis during solidification of the melt	
Figure 3.6: Olympus BX-53M optical microscope	
Figure 3.7: Inspect S50 scanning electron microscope	
Figure 3.8: Metkon Forcipol 300 – 1V grinder - polisher	
	.27
Figure 4.1: Cooling curves for Al-4Mg base alloy, Base + low Zr, Base + high Zr, Base + low Sm and Base + high Sm. The resulted total solidification cooling rates are 0.24°C/s, 0.50°C/s, 0.30°C/s, 0.43°C/s and 0.47°C/s respectively	ase
Figure 4.2: Cooling curves for Al-8Mg base alloy, Base + low Zr, Base + high Zr, Base	
+ low Sm and Base + high Sm. The resulted total solidification cooling rates are	150
0.49°C/s, 0.35°C/s, 0.47°C/s, 0.46°C/s and 0.37°C/s respectively.	28
0.47 C/s, 0.55 C/s, 0.47 C/s, 0.40 C/s and 0.57 C/s respectively.	
Figure 4.3: Solidification curves, their first and second derivatives obtained and the	.20
main reactions observed during solidification for Al-4Mg base alloy	29
Figure 4.4: Solidification curves, their first and second derivatives obtained and the	ر ـــ .
main reactions observed during solidification for Al-8Mg base alloy	30
Figure 4.5: Solidification curves, their first and second derivatives obtained and the	.50
main reactions observed during solidification for Al-4Mg-0.2Zr	32
main reactions observed during solidification for Ar-4ivig-0.221	
Figure 4.6: Solidification curves, their first and second derivatives obtained and the	.52
main reactions observed during solidification for Al-4Mg-0.5Zr	32
main reactions observed during solidification for Ar-4ivig-0.321	

Figure 4.7: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-4Mg-0.5Sm33
Figure 4.8: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-4Mg-1Sm33
Figure 4.9: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-8Mg-0.2Zr
Figure 4.10: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-8Mg-0.5Zr35
Figure 4.11: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-8Mg-0.5Sm36
Figure 4.12: Solidification curves, their first and second derivatives obtained and the main reactions observed during solidification for Al-8Mg-1Sm
Figure 4.13: Nucleation temperature T(N) of the four peaks observed in Al-4Mg base
alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.14: Nucleation temperature T(N) of the four peaks observed in Al-8Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.15: Nucleation and time t(N) of the four peaks observed in Al-4Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.16: Nucleation time t(N) of the four peaks observed in Al-8Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.17: Solidification reaction temperature T(M) of the four peaks observed in Al-4Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.18: Solidification reaction temperature T(M) of the four peaks observed in Al-8Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.19: Solidification reaction time t(M) of the four peaks observed in base alloy Al-4Mg without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
Figure 4.20: Solidification reaction time t(M) of the four peaks observed in Al-8Mg base alloy without addition, low Zr addition, high Zr addition, low Sm addition and high Sm addition
and high Sm addition