

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Cairo University Faculty of Veterinary Medicine

Preparation of Improved Trivalent Inactivated Avian Influenza (H9N2), ND (LaSota) and IB (M41 and Var2) Viral Vaccine

Presented by

Hanan Sayed Abd Elgawad Mohamed

(B. V.Sc.; 2006, Cairo University) (M. V.Sc.; 2010, Virology, Cairo University)

> For Ph.D. Degree in Virology

Under the Supervision of

Prof. Dr. Ahmed A. El-sanousi Professor of Virology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Hussein A. Hussein Professor of Virology and Vice Dean Professor and Exudative Manager, Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mohamed S. Madkour VSVRI, Abbasia, Cairo

قسم الفيروسات

Approval Sheet

This is to approve that Thesis presented by

Hanan Sayed Abd Elgawad Mohamed

For the degree of PhD. (Virology) has been approved by the examining committee

Prof. Dr. Gabr Fekry EL-Bagoury

Professor of Virology Faculty of Veterinary Medicine Moshtohour, Banha University.

Dr. Mahmes

Prof. Dr-Haitham Mohamed Mahmoud Amer

Professor and Head of Department of Virology How Faculty of Veterinary Medicine

Cairo University.

Prof. Dr- Mohamed Sayed Madkour

Chief Researcher, Veterinary Serum and Vaccine Research Institute Abbassia – Cairo (Supervisor)

Prof. Dr-Hussein Aly Hussein

Russein Ahme Professor of Virology and Vice- Dean of Graduate Studies and Research, Faculty of Veterinary Medicine Cairo University (Supervisor)

Prof. Dr-Ahmed Abd El-ghani El-Sanousi

Professor of Virology Faculty of Veterinary Medicine Cairo University

2020

الرمز البريدى: 12211

العنوان: كلية الطب البيطرى- الجيزة- مصر تليفون: 3571309- 3571305

Cairo University Faculty of Veterinary Medicine

Supervision Sheet

Prof. Dr. Ahmed A. El-sanousi

Professor of Virology
Department of Virology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Hussein A. Hussein

Professor of Virology and Vice Dean Faculty of Veterinary Medicine Cairo University

Prof. Dr. Mohamed S. Madkour

Professor and Exudative Manager Veterinary Serum and Vaccine Research Institute Abbasia, Cairo

(2020)

Cairo University Faculty of Veterinary Medicine

Name: Hanan Sayed Abd Elgawad Mohamed

Date of birth: 23 /7 /1983 Site of birth: Cairo Nationality: Egyptian

Degree: Philosophy of Doctor in Veterinary Science

Speciality: Virology

Title of the research: Preparation of improved trivalent inactivated Avian Influenza (H9N2), ND (LaSota) and IB (M41 and Var2) viral

vaccine

Supervisors:

Prof. Dr. Ahmed A. El-sanousi - Prof. of Virology, Department of Virology, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Hussein A. Hussein - Prof. of Virology, Vice Dean of Graduate Studies and Research, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Mohamed S. Madkour - Professor and Exudative Manager, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo.

Abstract

we prepared formalin inactivated combined vaccine with montanide 71 adjuvant containing H9N2, Lasota, IB M41 and variant IB. we measured the immune response levels in SPF and commercial layer chicken vaccinated and booster vaccinated by 1ml of the prepared vaccine until 6 months after the booster vaccination using HI test for H9N2 and laSota and ELISA test for IBV, these testes were made periodically every week in the first two months after the first vaccination then monthly to the end of the rearing period. Challenge tests also were repeated three times for all viruses used in this vaccine (after month from the first vaccination, after two months and six months from the booster vaccination). The shedding titers were measured in the oropharyngeal swabs by real time PCR at 3, 5, 7 and 10 days post challenges. The histopathological examinations were done on trachea and spleen in NDV challenged birds and trachea and kidney in H9N2 challenged birds. The results of the serological tests revealed production of protective antibodies titer in the both chicken types till 6 months after the booster vaccination in the most of tests. Also the results of the all challenge tests revealed decreasing the shedding levels than the control +ve. In the histopathological examination, The control +ve sometimes were less severity than the vaccinated samples.

Key words: H9N2, NDV, IBV, inactivated vaccine, montanide 71, challenge.

<u>Acknowledgment</u>

Special thanks to

<u>Prof. Dr. Ahmed A. El-Sanousi;</u> professor of virology, department of virology, faculty of veterinary medicine, Cairo University.

<u>Prof. Dr. Hussein A. Hussein;</u> professor of virology and vice dean of post graduate studies and research affairs, faculty of veterinary medicine, Cairo University.

<u>Prof. Dr. Mohamed S. Madkour;</u> professor and exudative manager, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo.

<u>Prof. Dr. Mounir M. Elsafty;</u> Central Laboratory for Evaluation of Veterinary Biologics.

<u>Prof. Dr. Mohmed A. Saad;</u> Director of Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo.

<u>**Dr. Marwa F. El saied**</u>; Central Laboratory for Evaluation of Veterinary Biologics.

<u>Or. Elshaimaa Ismael;</u> Assistant professor, department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University.

All people who help me in this work.

Contents

Introduction	
Review of Literature	
Avian Influenza Virus (AIV) 5	
History of H9N2 Worldwide5	
History of H9N2 in Egypt5	
Definition of AIV	
Morphology and Structure of AIV	
Protein Structure of the AIV	
Tests Used for Detection of AI Antigen and Antibodies 9	
Newcastle Disease Virus (NDV)	0
History of NDV Worldwide	0
History of ND in Egypt	0
Definition and Classification of the NDV	1
Morphology and Structure of the NDV	3
Protein Structure of the NDV	3
Tests Used for Detection of NDV Antigen and Antibodies 1:	5
Infectious Bronchitis Virus (IBV)1	6
History of IBV Worldwide1	6
History of IBV in Egypt1	7
Definition and Classification of IBV	9
Morphology and Structure of IBV	0
Protein Structure of IBV	О

Tests Used for Detection of IBV Antigen and Antibodies	22
Vaccines and Vaccination	23
AIV Vaccines	23
Inactivated Vaccines	24
Recombinant Vaccines	25
NDV Vaccines	25
Live Vaccines	26
Inactivated Vaccines	27
Recombinant Vaccines	27
IBV Vaccines	27
Live Vaccines	29
Inactivated Vaccines	30
Recombinant Vaccines	30
Adjuvant	31
Oil Adjuvants	32
Montanide Oil Adiuvants	32

Published Papers

H9N2 AI and NDV shedding pattern in SPF and commercial layer vaccinated chicken with trivalent vaccine containing H9N2 AI, LaSota, classical M41 and var 2 IB viruses challenged at 1, 3 and 7 months post vaccination

Shedding pattern of classical and variant strain of IB challenge virus in SPF and commercial layer vaccinated chicken with trivalent vaccine containing H9N2 AI, LaSota, classical M41 and var 2 IB viruses at 1, 3 and 7 months post vaccination

Discussion	35
Conclusion	43
Summary	45
Reference	49
Appendix	81
الملخص العربي	
المستخلص العربي	

List of Tables

Tables in the First Paper

N	Title	page
1	The mean Log2 ± SD of H9N2 HI antibody titer for SPF and commercial chicken after the first vaccination	27
2	The mean Log2 ± SD of H9N2 HI antibody titer for SPF and commercial chicken up to 6 week after the booster vaccination	27
3	The mean Log2 ± SD of H9N2 HI antibody titer for SPF and commercial chicken after the booster vaccination from 2 to 6 months	27
4	The mean Log2 ± SD of LaSota HI antibody titer for SPF and commercial chicken after the first vaccination	28
5	The mean Log2 ± SD of LaSota HI antibody titer for SPF and commercial chicken up to 6 week after the booster vaccination	28
6	The mean Log2 ± SD of LaSota HI antibody titer for SPF and commercial chicken after the booster vaccination from 2 to 6 months	28
7	Shedding ratio after challenge with H9N2 virus in SPF chicken	28
8	Shedding ratio after challenge with H9N2 virus in commercial chicken	29
9	shedding ratio after challenge with velogenic NDV genotype VIId virus in SPF chicken	29

10	Shedding ratio after challenge with velogenic NDV genotype VIId virus in commercial chicken	29
11	Mean HI titer for H9N2 and LaSota post the first challenge in commercial chicken and the second challenge in SPF chicken	29
12	Results of SPF chicken histopathological examination of organs collected from birds after 7 days post challenge with H9N2 virus	30
13	Results of commercial chicken histopathological examination of organs collected from birds after 7 days post challenge with H9N2 virus	30
14	Results of SPF chicken histopathological examination of organs collected from birds after 7 days post challenge with velogenic NDV genotype VIId virus	31
15	Results of commercial chicken histopathological examination of organs collected from birds after 7 days post challenge with velogenic NDV genotype VIId virus	32