

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Correlation between Ocular Biometric Parameters and Corneal Endothelium in a Sample of Young Egyptian Adults

Thesis

Submitted for Partial Fulfillment of MD Degree in **Ophthalmology**

By

Mohamed Nabil Hamza El Boray

M.B.B.Ch, M.Sc., Ophthalmology Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Tamer Mohamed El Raggal, MD.

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Maged Maher Salib Roshdy, MD.

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Mouamen Mohamed Mostafa, MD.

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Tamer Mohamed El Raggal**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Maged**Maher Salib Roshdy, Professor of Ophthalmology,

Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Mouamen**Mohamed Mostafa, Assistant Professor of

Ophthalmology, Faculty of Medicine, Ain Shams

University, for his great help, outstanding support,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mohamed Nabil Hamza El Boray

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Corneal Endothelium	4
■ Specular Microscopy	15
Ocular Biometric Parameters	38
Patients and Methods	44
Results	51
Discussion	84
Summary	98
Conclusion	101
References	102
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table 1:	Average endothelial cell density	8
Table 2:	Analysis of corneal endothelium	24
Table 3:	Summary of currently available microscopes and the key advertised fe each instrument.	atures of
Table 4:	Analysis of age and biometric data	
Table 5:	Specular data analysis in corneal zo quadrants	
Table 6:	Specular data analysis for each of the r 15 points on the specular microscopy m	
Table 7:	Comparison between males and regarding biometric data	
Table 8:	Comparison between males and regarding specular microscopy data	
Table 9:	Pearson correlation between ocular parameters and cell density	
Table 10:	Spearman correlation between ocular parameters and cell density	
Table 11:	Spearman correlation between ocular parameters	

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	Specular photomicrograph of endothelium.	
Figure 2:	Electron microscopy of the human endothelium.	corneal
Figure 3:	Diagram illustrating a 5% increase in endothelial cell density 2 mm from the	ne center
Figure 4:	and 10% 4 mm from the center	
Figure 5:	Major corneal loading forces in the stea	
Figure 6:	Pathway of light from its source in th	-
8	specular microscope back to the film	
	the same instrument	
Figure 7:	The size and shape of the reflected ima	ge of the
	light source is modified by the reflecting	g surface 18
Figure 8:	The endothelial cell area is a con-	npromise
	between the width of the light beam	
	thickness of the cornea	
Figure 9:	The endothelial cell layer image is inc	
	degraded by light being scattered in the	
Figure 10:	Representation of an optical section	
	narrow slit (A) or a wide slit (B) of light	_
	through various corneal layers and is fo	
TO' 11	the posterior corneal surface	
rigure 11:	Variations in the configuration of the	
Figure 19.	endothelium	
rigure 12:	indicate features mentioned	
Figure 19.	TOL NO. 1 1 CHANGEOU CAN	33
_	Image capture area of CEM 530	
•	CEM 530 capture points	
_	Simulated image of 15 fixation lights	
	Detail analysis screen of CEM-530	
8	central area	

Tist of Figures cont...

Fig. No.	Title	Page No.
	Nidek AL Scan.optical biometer	ldle), and of double
Figure 20:	Proper positioning of the patient	
Figure 21:	Auto-taking and auto-shot features of	f AL Scan
	and CEM 530	
Figure 22:	CEM 530 fixation window	47
Figure 23:	Analysis of the central and paracentra	l points 48
Figure 24:	Measured values obtained by AL scan	49
Figure 25:	Cell density (cell/mm ²⁾ in the centr	·
	paracentral (PC_D) and peripheral (P_	
Figure 26:	Hexagonality (%) in the central	•
	paracentral (PC_H), and peripher zones.	
Figure 27.	Coefficient of variation (%) in the cent	
rigure 21.	paracentral (PC_C) and peripheral(P_C	
Figure 28:	Cell density (cell/mm ²) in the central as	
g 0 _ 0 0	lower (L_D), nasal (N_D), temporal (•
	upper (U_D) quadrants	
Figure 29:	Hexagonality (%) in the central are	
<u> </u>	lower (L_H), nasal (N_H), temporal ('	T_H), and
	upper (U_H) quadrants	57
Figure 30:	Coefficient of variation (%) in the cer	ntral area
	(C_C) , lower (L_C) , nasal (N_C) ,	-
	(T_C), and upper (U_C) quadrants	
Figure 31:	Cell density for each of the 15 measur	-
	on the specular microscopy map. The	
	cell density (blue), the minimum ce	•
	(red)	
Figure 32:	Cell density (cell/mm ²⁾ for each o	
	measured points	60

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 33:	Hexagonality for each of the 15 meas on the specular microscopy map. The hexagonality (blue), the minimum he (red)	e maximum exagonality
Figure 34:	Hexagonality (%) for each of the 15 points.	measured
Figure 35:	Coefficient of variation measured in 15 points of the specular microscopy maximum CV (blue), the minimum C	each of the map. The
Figure 36:	Coefficient of variation (%) for each measured points.	of the 15
Figure 37:	ACD (mm) in males' and females' gro	ups 65
	AL (mm) in males' and females' group	
	WTW (mm) in males' and females' gre	
_	Corneal surface area (mm ²) in r	_
	females' groups	
Figure 41:	Km (D) in males' and females' groups	67
Figure 42:	Specular microscopy map showing to	he areas of
	significant difference between n	nales and
Figure 43:	females regarding the hexagonality Specular microscopy map showing to significant difference between in females regarding the coefficient of va	he areas of nales and
Figure 44.	Cell density (cell/mm ²) difference be	
1 18410 11.	groups	
Figure 45:	Correlation between age and the concell/mm ²⁾ in the nasal quadrant (N_I	ell density
Figure 46:	Correlation between CCT (µm) an	
80 100	density (cell/mm ²) in the central area	
Figure 47:	Correlation between CCT (µm) an	
9	density (cell/mm ²) in the nasal (N_D)	
Figure 48:	Correlation between CCT (µm) an	-

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 49.	Correlation between CCT (µm) a	and the cell
rigure 40.	density (cell/mm ²) in the upper (U_l	
Figure 50:	Correlation between CCT (µm) a	•
J	density (cell/mm ²) in the tem	poral (T_D)
	quadrant	76
Figure 51:	Correlation between ACD (mm)	and WTW
	(mm)	79
Figure 52:	Correlation between ACD (mm) and	l AL (mm) 79
Figure 53:	Correlation between ACD (mm) and	l SEQ (D) 80
Figure 54:	Correlation between AL (mm) and V	WTW (mm)81
Figure 55:	Correlation between AL (mm) and (CCT (µm)81
Figure 56:	Correlation between AL (mm) and A	ACD (mm) 82
Figure 57:	Correlation between Km (D) and W	TW (mm) 82
Figure 58:	Correlation between Km (D) and AI	(mm)83

Tist of Abbreviations

Abb.	Full term
ACC	Anterior corneal curvature
ACD	Anterior Chamber Depth
AL	Axial length
ANOVA	One way analysis of variance
ATPase	Adenosine-tri-phosphatase
CCT	Central corneal thickness
CV	Coefficient of variation
ECD	Endothelial cell density
IOL	Intraocular lens
IQR	Interquartile range
К	Keratometry
PACD	Primary angle-closure disease
PD	Pupil diameter
SD	Standard deviation
SM	Specular microscopy
SPSS	Statistical Package for Social Science
WTW	White to White

Introduction

Corneal endothelium is one of the five layers of the cornea and it covers its posterior surface. These metabolically active cells are responsible for regulating fluid and solute aqueous transport between the and corneal stromal compartments.(1)

For clear vision in a healthy cornea, the number of endothelial cells should be sufficient. (2) Since the corneal endothelium is incapable of mitosis, the number of cells present at birth diminishes because of several factors such as aging, trauma and surgery. (3)

The average number of endothelial cells and other parameters of endothelium in healthy subjects changes with different ethnic origins. (4) Like every tissue of the human body, the cornea undergoes age-associated changes. The cell density decreases with age. Enlargement of healthy endothelial cells and a reduction in their hexagonality occur to compensate the decrease in number. (5)

The corneal endothelium can be visualized using slitlamp examination with high magnification and specular reflection. However, it is not possible to assess the size or number of cells with this technique. Therefore, we must rely on other diagnostic studies such as specular microscopy and confocal microscopy. (6)

In clinical practice, specular microscopy is the most accurate way to examine the corneal endothelium. It is a noninvasive photographic technique that allows visualization and quantitative analyses and of the qualitative corneal endothelium.

Instrument projects light onto the cornea and captures the image that is reflected from the optical interface between the corneal endothelium and the aqueous humor. The reflected image is analysed by the instrument and displayed as a specular photomicrograph. (7)

In addition to the endothelial cell density (ECD), other important values that reflect the health of the corneal endothelium are pleomorphism, which corresponds to the percentage of six-sided cells, and polymegathism, which characterizes cell size variability and is derived from the coefficient of variation (CV). Finally, central corneal thickness (CCT) is an indirect value of endothelial cell health because endothelial cell failure produces corneal oedema and increases CCT. (8) There are many ocular and systemic conditions that affect corneal endothelium. Long-standing anterior uveitis, diabetes mellitus, and chronic renal failure decrease ECD. Wearing contact lenses provokes pleomorphism polymegethism of the corneal endothelium. (9-12)