

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

MODAL ANALYSIS OF TWO DIMENSIONAL OPEN PERIODIC STRUCTURES

By

Mostafa Ibrahim Mohammed Abdullah Al-Kholi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Electrical Communications Engineering

MODAL ANALYSIS OF TWO DIMENSIONAL OPEN PERIODIC STRUCTURES

By

Mostafa Ibrahim Mohammed Abdullah Al-Kholi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Electrical Communications Engineering

Under the Supervision of

Prof. Tamer M. Abuelfadl

Professor of Electromagnetic Waves Electronics and Electrical Communications Engineering Faculty of Engineering, Cairo University

MODAL ANALYSIS OF TWO DIMENSIONAL OPEN PERIOIDC STRUCTURES

By Mostafa Ibrahim Mohammed Abdullah Al-Kholi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Electrical Communications Engineering

Examining Committee	
Prof. Tamer M. Abuelfadl,	Thesis Main Advisor
Prof. Islam A. Eshrah	Internal Examiner
Prof. Ahmed M. Attiya	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Mostafa Ibrahim Mohammed Abdullah Al-Kholi

Date of Birth: 06/12/1987 **Nationality:** Egyptian

E-mail: m.e.khouli@gmail.com

Phone: 01113142523

Address: 5 street 13, Mouazzafeen city, Helwan, Cairo, Egypt

Registration Date: 01/03/2015 **Awarding Date:** .../..../2021 **Degree:** Master of Science

Department: Electronics and Electrical Communications Engineering

Supervisor:

Prof. Tamer M. Abuelfadl

Examiners:

Prof. Tamer M. Abuelfadl (Thesis main advisor)
Prof. Islam A. Eshrah (Internal examiner)
Prof. Ahmed M. Attiya (External examiner)
Professor in Electronics Research Institute

Title of Thesis:

MODAL ANALYSIS OF TWO DIMENSIONAL OPEN PERIODIC STRUCTURES

Key Words:

Open periodic structures, Modal analysis, Improper modes, Scan blindness, Method of moment

Summary:

Applying modal analysis using the Method of moment and Floquet theorem in spectral domain to a two dimensional open periodic structure, describing the nature of every possible mode: bounded or unbounded, proper or improper and determining precisely when a mode changes its nature from proper to improper or vice versa.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mostafa Ibrahim Mohammed Abdullah Al-Kholi Date: / /2021

Signature:

Dedication

To my parents, sisters and brothers

Acknowledgment

To Prof. Tamer M. Abuelfadl, for his patience, crucial advices and support.

Table of Contents

18	ible of	t Conte	nts	Vi
Li	st of	Tables		vii
Li	st of]	Figures		xvi
No	omen	clature		xvii
Al	bstrac	et		xviii
1	Intr	oductio	o n	1
2	Lite	rature 1	review	3
	2.1	Histor	ical background	3
	2.2	Guidir	ng structures classification	4
	2.3	Guide	d waves classification	5
		2.3.1	Homogeneous plane waves	5
		2.3.2	Inhomogeneous plane waves	6
		2.3.3	TM guided waves classification	8
		2.3.4	TE guided waves classification	10
	2.4	Modal	l analysis of grounded dielectric slab	12
		2.4.1	Dyadic Green's function of the grounded dielectric slab	13
		2.4.2	Field over the grounded dielectric slab	13
		2.4.3	Branch point and branch cut	14
		2.4.4	Integration in the k_x plane	18
		2.4.5	Integration in the k_z plane	20
		2.4.6	Integration in the θ_k plane	21
		2.4.7	Spectral properties variation with frequency	23
		2.4.8	Spectral properties variation with angle of propagation	30
	2.5	Modal	l analysis of one dimensional open periodic structures	30
		2.5.1	Fields over one dimensional open periodic structures	30
		2.5.2	Floquet representation	31

		2.5.3	Method of moment solution	32
		2.5.4	Expansion of equivalent surface current over one dimensional periodic structure	34
		2.5.5	Spectral properties variation with frequency	38
		2.5.6	Spectral properties variation with angle of propagation	40
3	Mod	lal anal	ysis of two dimensional open periodic structures	50
	3.1	Non-p	periodic structure	50
		3.1.1	Integral equations	50
		3.1.2	Method of moment	52
		3.1.3	Spectral domain approach	56
	3.2	Two d	imensional Open periodic structure	59
		3.2.1	Floquet representation	59
		3.2.2	Method of moment solution	61
	3.3	-	sion of equivalent surface current over two dimensional periodic structure	67
		3.3.1	Basis functions	68
		3.3.2	Selection of basis functions	72
	3.4		ral properties variation with frequency	73
	5.1	3.4.1	Dispersion relation of two dimensional open periodic structure	74
		3.4.2	Spectral properties of spatial harmonics	76
	3.5		ral properties variation with angle of propagation	83
	3.3	3.5.1	Spatial harmonics representation in $\beta_x - \beta_y$ plane	84
		3.5.2	Branch point and branch cut	88
4	D	14	•	02
4	Resu			93
	4.1		ion of modal properties with frequency	94
		4.1.1	Comparing results with a commercial numerical solver	
		4.1.2	The mode TM_0	
		4.1.3	The mode TE_1	
	4.0	4.1.4	The mode TM_1	
	4.2		ion of modal properties with angle of propagation	
		4.2.1	At $f = 10GHz$	
		4.2.2	At $f = 13GHz$	
		4.2.3	J v	
		4.2.4	At $f = 21.9GHz$	
	4.3	4.2.5	At $f = 22.687GHz$	
	4.3	Direct	application of the results: scan blindness angles	125
5	Con	clusion		133

Re	deferences 1:			134
A	Steepest descent path integration method			137
	A.1	Integra	als of the Laplace's form	137
	A.2	Deform	nation of path of integration	139
	A.3	Steepe	st descent path integration concept	140
		st descent and ascent paths determination	144	
		A.4.1	Steepest descent or ascent paths contours	144
		A.4.2	Steepest descent or ascent directions	145
		A.4.3	Number of steepest descent and ascent contours at the saddle point	146
	A.5	Staana	st descent path integration method	
	A.J	•		140
		A.5.1	The implementation of the Steepest descent path integration method	146
		A.5.2	Application of the steepest descent path integration method	147
В	Modal analysis of planar open guiding structures			152
	B.1 TM waves			153
	B.2	TE wa	ves	156
C	Dya	dic Gre	en's function of the grounded dielectric slab	158
D	Elec slab	tric fiel	d due to a line current source over a grounded dielectric	e 167
		D.0.1	Electric field due to a line current source placed at the surface of the grounded dielectric slab	167

List of Tables

2.1	Some of TM and TE modes cut off frequencies, obtained from the direct expressions (2.62) and (2.63)	24
A .1	Brief of previous analysis concerned with steepest paths directions	149

List of Figures

2.1	Classification of guiding structures	4
2.2	Classification of guided modes over slow guiding structures according to their transverse α attenuation constants over the struc-	
	ture surface	5
2.3	A slow wave guiding structure, consists of a ground plane mounted by a dielectric slab	7
2.4	Grounded dielectric slab. (a) Physical structure and (b) equivalent circuit of grounded dielectric slab. The resonance condition	
	according to the transverse resonance technique is that $z + z = 0$.	8
2.5	Classification of complex guided TM waves. (a), (b) and (c) represents a proper complex waves, where (d),(e) and (f) represents	
	improper complex waves	10
2.6	Classification of complex guided TE waves. (a), (b) and (c) represents a proper complex waves, where (d),(e) and (f) represents	
	improper complex waves	12
2.7	Real structure with $\varepsilon_r = 20$ and $d = 1.4mm$	13
2.8	A line current source directed along <i>y</i> -direction over a grounded dielectric slab	14
2.9	Branch cut of the square root function $k_z = \sqrt{k_0^2 - k_x^2}$ in the com-	
	plex k_x -plane. The rippled black solid lines are the branch cuts	16
2.10	A closed path of integration which covers the entire upper half space, and intersects with the defined branch cut of the squared root function $k_z = f(k_x)$. Legend: torques line is the closed path	
	of integration	17
2.11	New deformed path of integration, along which k_z is analytic. (a) the entire deformed path and (b) a magnified view of the deformed path of integration around the branch point. The function k_z is analytic on any arbitrary point over the new deformed path of integration, and the condition $\Im\{k_z\} \ge 0$ is met for the entire path of	
	integration	18
2.12	(a) Original path of integration in k_x plane and (b) the deformed path of integration around branch cut and branch point in the same	20
2.10	plane. The path of integration is shown as a bold torques line	20
2.13	Path of Integration in the k_z plane (this is the deformed path of integration in k_x plane S after mapping to the k_z plane)	21