

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليه العلوم - قسم الكيمياء

Comparative study between conventional and electrical coagulation in the removal of organic matter from some wastewater

Thesis Submitted by

Menna tallah hesham fathy aly bassiouny

B.Sc. (Entomology and Chemistry) 2010M.Sc. (Organic Chemistry) 2017

For the requirement of Ph.D. Degree of Science in Chemistry

Prof. Dr. Wael Sayed Ibrahim Abou-Elmagd
Professor of Organic Chemistry Faculty of Science Ain Shams University

Dr. Hesham Samir Abdel-samadAssociate professor of physical chemistry Faculty of
Science - Ain Shams University

Dr. Ashraf Ibrahem Shehata HafezGeneral manager of chemistry – Egyptian electricity
holding company

To

Department of Chemistry

Faculty of Science, Ain Shams University

2021

كليه العلوم - قسم الكيمياء

Comparative study between conventional and electrical coagulation in the removal of organic matter from some wastewater

By

Menna tallah hesham fathy aly bassiouny

Thesis Advisors Approved

Prof. Dr. Wael Sayed Ibrahim Abou-Elmagd

Professor of Organic Chemistry- Faculty of Science - Ain Shams University

Dr. Hesham Samir Abdel-samad

Associate professor of physical chemistry- Faculty of Science - Ain Shams University

Dr. Ashraf Ibrahem Shehata Hafez

General manager of chemistry – Egyptian electricity holding company

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgement

First and foremost, thanks to <u>Allah</u> for helping me to accomplish this work.

This research project would not have been possible without the support of many people. I'd like to express my heartfelt gratitude to my, **Prof. Dr. Wael Sayed Ibrahim Abou-Elmagd** (Professor of Organic Chemistry, Faculty of Science, Ain Shams University), for his patient supervision, friendly guidance, encouragement, and insightful advice at all stages of this project. It was a once-in-a-lifetime chance for me to study under his guidance.

I'd also like to express my heartfelt gratitude to **Dr. Ashraf Ibrahem Shehata Hafez**, (General manager of chemistry – Egyptian electricity holding company) for suggesting the research topic and for his close supervision, insightful advice, and helpful direction throughout this project and **Dr. Hesham Samir Abdel-samad**, (Associate professor of physical chemistry- Faculty of Science - Ain Shams University) for his unending assistance, goodness, and excellent care, as well as encouragement and support.

Menna tallah hesham fathy

Dedication

This work is dedicated to my family with love.

First and foremost, to my father, who has always been a source of inspiration for me. He instilled in me the motivation and discipline to tackle any task with passion and determination.

To my backfone and my life partner, my success would not have been possible without my honest husband's love and support. Thanks for believing in me, strengthen me in my weak moments. I hope this work make you proud

To the gentle soul, my lovely mother, the woman who has given her life for my comfort, help, and support with her wisdom and unconditional love, who taught me to trust in Allah, believe in hard work to achieve my goals.

To the seeds of my life, Yassin and Farida, I promised myself to make you proud, and I hope I have fulfilled part of my promise with this achievement. Literally, you make this world worth to live in.

Deep Thanks ...

With warm gratitude and deep love ...

Menna tallah hesham,

June 2021

Contents

	Pages
List of Abbreviations	i
List of Figures	ii
List of Tables	V
Aim of the work	viii
Abstract	ix
Summary	Х
1.General Introduction	
1.1.Water classification	1
1.2.Raw water characteristics	2
1.3. Water and Pollution	3
1.4. Water treatment processes	5
1.4.1.Coagulation and Flocculation process:	6
1.4.1.1.Nature of negatively charged colloidal particles	7
1.4.1.2.Flocculation process	7
1.4.1.3. Coagulation process	8
1.4.1.4.Disadvantages of the coagulation - flocculation process	9
1.4.1.5. Flocculants for the Coagulation Process	11
1.4.1.6.Coagulant Aids	12
1.4.1.7. Rapid mix for complete Coagulation	13
1.4.1.8.Natural polymers	13
1.4.2.Sedimentation process	14
1.4.3.Filtration Process	15
1.5.Theory of electrocoagulation	17
1.5.1.Main reactions	18

1.5.2.Side reactions	22
1.5.3.Properties of the sludge	24
1.5.4.Treatment parameters	25
1.5.5.Comparison of electrocoagulation and chemical coagulation	30
1.6. Practical considerations of electrocoagulation	32
1.6.1.Constructions of electrocoagulation systems	32
2.Experimental work	
2.1.Chemicals	35
2.2. Materials	35
2.2.1.lignin	35
2.2.2.Electrodes	35
2.2.3.Industrial water specification	36
2.3.Methodology	36
2.3.1.Isolation of lignin	36
2.3.2.Instrumentations	36
2.3.2.1.The constructed electrochemical cell	36
2.3.3.Analyses	38
2.3.3.1.Elemental analysis	38
2.3.4.FT-IR measurements	38
2.3.5.Determination of Turbidity	38
2.3.6.Determination of Organic matter	38
2.3.7.Determination of total suspended solid (TSS) and total dissolv solid (TDS)	ed 38
2.3.8.Determination of metal ions in water	39
2.3.9.Determination of pH	39
2.3.10.Determination of BOD	39
2.3.11.Determination of COD	39
2.3.12.Determination of Total hardness	39
2.3.13.Determination of Calcium hardness	39

2.3.14.Determination of Magnesium hardness	39
2.3.15.Determination of Total alkalinity	39
2.3.16.Determination of Oil and grease	40
2.3.17.Removal efficiency	40
2.4.Jar test method for chemical coagulation	40
3.Result and discussion	
3.1. Characterization of lignin and industrial wastewater specificatio	ns 43
3.1.1.Characterization of lignin	43
3.1.1.1.FTIR of isolated lignin	43
3.1.1.2.Energy dispersive x-ray (EDX)	45
3.1.1.3.Elemental analysis of lignin	46
3.1.2.Determination of lignin in water	46
3.1.3.Specifications of industrial waste water	48
3.1.3.1.Specifications the water used in this work	48
3.1.4.Effect of chemical coagulation method on the treatment of industrial wastewater	49
3.1.4.1.Using of Jar test for the removing of (BOD), (COD) and (TSS) from wastewater represented as percentage removal	50
3.2.A Comparative study of electro and chemical coagulation for efficient removal of lignin and some other pollutants from industria wastewater using aluminum electrode	l 52
3.2.1.Electrocoagulation mechanism	52
3.2.2.Effect of applied potential	53
3.2.3.Effect of applied potential and applied current density on the properties of cell electrodes	56
3.2.4.Effect of distance between aluminum electrodes on the properties of cell	66
3.2.5.Cost estimation	73
3.2.6.Effect of electro, chemical and both on the specifications of treated water	74

3.3.A Comparative study of electro and chemical coagulation for efficient removal of lignin and some other pollutants from industrial	ı
wastewater using iron electrode	76
3.3.1. Electrocoagulation mechanism using iron electrodes	77
3.3.2. Factor affecting the efficiency removal of lignin and other pollutants from water using of electrocoagulation using iron electrode.	78
3.3.2.1.Effect of applied potential	78
3.3.3.Effect of applied potential and applied current dens on the properties of cell electrode	sity 83
3.3.4.Effect of distance between iron electrodes on the properties of cell	of 91
3.3.5.Comparison between chemical and electrochemical coagulation methods using iron electrodes on the removal percentage of (BOD), (COD) and (TSS) from wastewater	
3.3.6.Effect of electro and chemical coagulation and the combinatio of both on the specifications of treated water	n 97
3.3.7.Cost estimation	99
4.Refrences	100
Arabic summary	١
Arabic abstract	٥

List of Abbreviations

STPs sewage treatment plants
NOM natural organic matter
COD chemical oxygen demand

PAM polyacrylamide

PDADMAC Poly (diallyldimethylammonium

chloride)

CPAMs Polyacrylamides

ECH/DMA Epichlorohydrin/dimethylamine

polymers

ORP oxidation-reduction potential

EF electro flotation EC electrochemical

DAF dissolved air flotation

DC direct current

AC alternating current

FTIR Fourier transform infrared

system

TOC total organic carbon
TSS total suspended solid
TDS total dissolved solid

BOD Biological oxygen demand EPA environmental protection

agency

EDX Energy dispersive x-ray Energy consumption

List of Figures

Figure 1.1-1 water classification on earth 1
Figure 1.3-1 Untreated effluent flows from a sugar factory to the river4
Figure 1.4.1.3-1 The purpose of coagulant addition 9
Figure 1.4.2-1 Sedimentation process 15
Figure 1.4.3-1 Multimedia filter 17
Figure 1.5-1 Schematic representation of typical reactions during the EC treatment-t 18
Figure 1.5.1-1 E-pH diagrams of a) iron and b) aluminum at 25 °C, 1 bar and 10–6 M. system.
Figure 1.6.1-1 Connections and electrode polarity in a) bipolar and b) monopolar EC systems.
Figure 2.2.2-1 New polished Aluminum (A) and iron (B) electrodes 35
Figure 2.2.2-2 Aluminum (A) and iron (B) electrodes after electrocoagulation processes 36
Figure 2.3.2.1-1 scale, Electrochemical cell 37
Figure 2.3.2.1-2 Schematic diagram of treatment plant 37
Figure 2.4-1 Typical Jar test apparatus with ferric chloride for the clarification of raw water 40
Figure 3-1 structure of lignin 42
Figure 3.1.1.1-1 FTIR of pure and isolated lignin 44
Figure 3.1.1.2-1 Energy dispersive X-ray (EDX) of lignin 45
Figure 3.1.2-1 The variation of wavelength against absorption 46
Figure 3.1.2-2 Calibration curve of low standard concentration lignin 47
Figure 3.1.2-3 Calibration curve of high standard concentration lignin 47
Figure 3.1.4.1-1 BOD removal from wastewater at different ferric chloride 50
Figure 3.1.4.1-2 COD removal from wastewater at different ferric chloride 51

Figure 3.1.4.1-3 TSS removal from wastewater at different ferric chloride 51
Figure 3.2.3-1 The variation of current density (A) and weight loss of aluminum electrode for potential of 2v at 5 minutes 56
Figure 3.2.3-2 The variation of current density (A) and weight loss of aluminum electrode for potential of 2v at 10 minutes 57
Figure 3.2.3-3 The variation of current density (A) and weight loss of aluminum electrode for potential of 2v at 15 minutes 57
Figure 3.2.3-4 The variation of current density (A) and weight loss of aluminum electrode for potential of 2v at 20 minutes 58
Figure 3.2.3-5 The variation of current density (A) and weight loss of aluminum electrode for potential of 2v at 25 minutes 58
Figure 3.2.3-6 The weight loss of aluminum electrodes at 2v for different conditions 59
Figure 3.2.3-7 The variation of current density (A) and weight loss of aluminum electrode for potential of 4v at 5 minutes 59
Figure 3.2.3-8 The variation of current density (A) and weight loss of aluminum electrode for potential of 4v at 10 minutes 60
Figure 3.2.3-9 The variation of current density (A) and weight loss of aluminum electrode for potential of 4v at 15 minutes 60
Figure 3.2.3-10 The variation of current density (A) and weight loss of aluminum electrode for potential of 4v at 20 minutes 61
Figure 3.2.3-11 The weight loss of aluminum electrodes at 4v for different conditions 61
Figure 3.2.3-12 The variation of current density (A) and weight loss of aluminum electrode for potential of 8v at 5 minutes 62
Figure 3.2.3-13 The variation of current density (A) and weight loss of aluminum electrode for potential of 8v at 10 minutes 62
Figure 3.2.3-14 The variation of current density (A) and weight loss of aluminum electrode for potential of 8v at 15 minutes 63
Figure 3.2.3-15 The weight loss of aluminum electrodes at 8v for different conditions 63
Figure 3.2.3-16 The variation of current density (A) and weight loss of aluminum electrode for potential of 12v at 5 minutes 64

Figure 3.2.3-17 The variation of current density (A) and weight loss of aluminum electrode for potential of 12v at 10 minutes 64
Figure 3.2.3-18 The weight loss of aluminum electrodes at 12v for different conditions 65
Figure 3.3.3-1 The variation of current density (A) and weight loss of iron electrode for potential of 2v at 5 minutes 84
Figure 3.3.3-2 The variation of current density (A) and weight loss of iron electrode for potential of 2v at 10 minutes 84
Figure 3.3.3-3 The variation of current density (A) and weight loss of iron for potential of 2v at 15 minutes 85
Figure 3.3.3-4 The variation of current density (A) and weight loss of iron for potential of 2v at 20 minutes 85
Figure 3.3.3-5 The variation of current density (A) and weight loss iron electrode for potential of 2v at 25 minuets 86
Figure 3.3.3-6 The weight loss of iron electrodes at 2v for different conditions 86
Figure 3.3.3-7 The variation of current density (A) and weight loss of iron electrode for potential of 4v at 5 minutes 87
Figure 3.3.3-8 The variation of current density (A) and weight loss of iron electrode for potential of 4v at 10 minutes 87
Figure 3.3.3-9 Variation of current density (A) and weight loss of iron electrode for potential of 4v at 15 minutes 88
Figure 3.3.3-10 weight loss of iron electrodes at 4v for different conditions 88
Figure 3.3.3-11 Variation of current density (A) and weight loss of iron electrode for potential of 8v at 5 minutes 89
Figure 3.3.3-12 Variation of current density (A) and weight loss of iron electrode for potential of 8v at 10 minutes 89
Figure 3.3.3-13 weight loss of iron electrodes at 8v for different conditions 90
Figure 3.3.3-14 weight loss of iron electrodes at 12v at 5minuets 90