

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

ASSESSMENT OF SEISMIC BEHAVIOR FOR ECCENTRIC BRACED FRAME WITH VERTICAL LINK

By

Nada Nasser Mohamed Sobhy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

ASSESSMENT OF SEISMIC BEHAVIOR FOR ECCENTRIC BRACED FRAME WITH VERTICAL LINK

By Nada Nasser Mohamed Sobhy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Professor of Steel Structures and Bridges
Structural Engineering Department
Faculty of Engineering, Cairo University

Dr. Kamal Ghamry Metwally

Associate Professor
Structural Engineering Department
Faculty of Engineering, Beni-Suef University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

ASSESSMENT OF SEISMIC BEHAVIOR FOR ECCENTRIC BRACED FRAME WITH VERTICAL LINK

By Nada Nasser Mohamed Sobhy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

Structural engineering

in

Approved by the Examining Committee

Prof. Dr. Sherif Ahmed Mourad, Thesis Main Advisor

Dr. Kamal Ghamry Metwally, Advisor

- Associate professor at Beni-Suef university

Prof. Dr. Mokhtar Mahmoud Seddeik, Internal Examiner

Prof. Dr. Nabil Sayed Mahmoud, External Examiner

Professor at Mansoura university

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Nada Nasser Mohamed Sobhy

Date of Birth: 3/2/1993 **Nationality:** Egyptian

E-mail: Nada.nasser96@yahoo.com

Phone: 01270117584

Address: 115 Tareat El Zommor St- Naser El Dien-

Haram-Giza.

Registration Date: 1/3/2015

Awarding Date:/2021.

Degree: Master of Science

Department: Structural Engineering

Supervisors:

Prof. Dr. Sherif A.Mourad. Dr. Kamal Ghamry Metwally

- Associate Professor at Beni-Suef university

Examiners:

Prof. Dr. Sherif A. Mourad (Thesis main advisor)

Dr. Kamal Ghamry Metwally (Advisor)

Prof. Dr. Mokhtar M. Seddeik (Internal Examiner) Prof. Dr. Nabil S. Mahmoud (External Examiner)

- Professor at Mansoura university

Title of Thesis:

Assessment of Seismic Behavior for Eccentric Braced Frame with Vertical Link

Key Words:

Non-linear analysis; Pushover analysis; Time history analysis; Length of link, Response modification factor.

Summary:

This research is concerned with studying seismic behavior of steel eccentric braced frames with vertical link considering several parameters, such as: number of stories, number of bays, length of link, and ground accelerations. Through this study, Response Modification factor is investigated for these models considering two analysis methods: pushover analysis and time history analysis. The results show that short link gives more ductility compared with long link. Values of response modification factor increases as peak ground acceleration increases for the same height of building, number of stories, and number of bays. Finally, it is concluded that using one value for response modification factor is not acceptable for number of frames in different cases.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and

have cited them in the references section.

Name: Nada Nasser Mohamed Sobhy	Date://
Signature:	

Acknowledgments

First of all, I would like to express my sincere gratitude to God for help with every step in my life.

I wish to express my gratitude to his mentor, **Professor Dr. Sherif A. Mourd,** professor of steel structures and bridges, Faculty of Engineering, Cairo University, who kindly supervised this study for his continuous support, encouragement, useful suggestions throughout this research and revision of this thesis.

I acknowledge my most profound appreciation and great thanks to the supervisor, **Dr. Kamal Ghamry Metwally**, Associate Professor of structural engineering at Faculty of Engineering, Beni-Suef University, for his guidance, support, and continuous encouragement.

Words cannot express how deeply I indebted to my respected parents **Eng. Nasser Mohamed Sobhy** and **Gehan Ahmed Salah** for their care, support, and encouragement all over my life. In addition, I would like to express my deepest appreciation to my sister **Dr. Nadeen Nasser** for their support and encouragement.

I would like also to express my deepest appreciation **Eng. Amr Ghanem** for his usual support.

Table of Contents

ACKNO	WLEDGMENTSII
LIST OF	F TABLESVI
LIST OF	F FIGURESVIII
NOMEN	ICLATUREXIII
ABSTRA	ACTXVI
CHAPT	ER 1 : INTRODUCTION1
1.1. In	troduction
1.2.1. 1.2.2. 1.2.3. 1.2.4. 1.2.5. 1.2.6. 1.2.7.	Moment resisting frame (MRF)
1.4. Th	nesis Organization and Content
CHAPT	ER 2 : LITERATURE REVIEW12
2.1. In 2.1.1. 2.1.2. 2.1.3. 2.1.4.	Different research work on moment resisting frame (MRF):
CHAPT	ER 3 : MODELING AND VERIFICATION47
3.1. In	troduction
3.2. Us	sed Software
3.3. Pu	ishover analysis47

3.3.	1. Verification model	3
3	.3.1.1. Modeling process)
3	.3.1.2. Comparison between the results	2
3.4.	Time-history analysis63	3
3.4.	1. Verification model64	1
3	.4.1.1. Modeling process	5
3	.4.1.2. Comparison between the results	2
CHA	PTER 4 : PARAMETRIC STUDY	.74
4.1.	Introduction	1
4.2.	Layout and Configuration74	1
4.2.	1. Geometry	1
4.2.	2. Design material79)
4.2.	3. Design code and sections79	•
4.2.	4. Design loads79)
4.2.	5. Mass source83	3
4.3.	Design software	1
4.4.	Pushover Analysis84	1
4.5.	Earth Ground Motion 8	5
4.6.	Time-history Analysis	5
4.7.	Shear Link Calculations. 8	7
CHA	PTER 5 : RESULTS	.91
5.1.	General 9	l
5.2.	Results of Eccentric Braced frames with vertical link9	1
5.2.		
5.2.		
5.2.	•	
5.3.	Dynamic Time-history Output	3
5.4.	Comparison between Results	2
CHA	PTER 6 : SUMMARY AND CONCLUSIONS	146
6.1	General 140	5

6.2.	Summary	146
6.3.	Conclusions	146
6.4.	Future Research Work	148
REF	ERENCES	149
APPI	ENDIX A	151
APPI	ENDIX B	159
APPI	ENDIX C	166
APPI	ENDIX D	170
APPI	ENDIX E	178

List of Tables

Table 2.1: length of vertical links.	20
Table 3.1: Length of link and its section.	
Table 3.2: Section of the beam, bracing, and column	49
Table 3.3: Section and beam, column, and bracing.	
Table 4.1: Values of exposure Height factor (K)	
Table 4.2: The characteristics factor S, TB, TC, and TD according to the type of soil	
Table 4.3: Ratio of base shear Vs number of stories.	83
Table 4.4: List of the used ground motions.	85
Table 4.5: Check for short link sections.	
Table 4.6: Check for long link sections.	89
Table 5.1: Natural periods of Group (1).	92
Table 5.2: Natural period of Group (2).	93
Table 5.3: Characteristics of Group (1).	94
Table 5.4: Characteristics of Group (2).	95
Table 5.10: Time-history results for Aqaba, 1995 earthquake records for Group (1).	114
Table 5.11: Time-history results for El Centro, 1940 earthquake records for Group ((1).
	115
Table 5.12: Time-history results for Kobe, 1995 earthquake records for Group (1)	116
Table 5.13: Time-history results for Loma Prieta, 1989 earthquake records for Grou	.p
(1)	
Table 5.14: Time-history results for Mexico, 1980 earthquake records for Group (1)).
	118
Table 5.15: Time-history results for Northridge, 1994 earthquake records for Group	1
(1)	119
Table 5.16: Time-history results for Whittier Narrow, 1987 earthquake records for	
Group (1)	
Table 5.17: Time-history results for Aqaba, 1995 earthquake records for Group (2).	
Table 5.18: Time-history results for El Centro, 1940 earthquake records for Group (
Table 5.19: Time-history results for Kobe, 1995 earthquake records for Group (2)	
Table 5.20: Time-history results for Loma Prieta, 1989 earthquake records for Grou	-
(2)	
Table 5.21: Time-history results for Mexico, 1980 earthquake records for Group (2)	
	125
Table 5.22: Time-history results for Northridge, 1994 earthquake records for Group	1
(2)	126
Table 5.23: Time-history results for Whittier Narrow, 1987 earthquake records for	
Group (2)	
Table 5.24: Average results of ductility reduction factor (R_{μ}) for the seven earthqual	
records for Group (1).	
Table 5.25: Average results of ductility reduction factor (R_{μ}) for the seven earthqual	
records for Group (2).	
Table 5.26: Reduction factor (R) for the seven earthquake records for Group (1)	
Table 5.27: Reduction factor (R) for the seven earthquake records for Group (2)	131

Table 5.28: Comparison between the force reduction of EBF with a vertical link and	
EBF with a horizontal link for Group 113	9
Table 5.29: Comparison between the force reduction of EBF with a vertical link and	
EBF with a horizontal link for Group 213	9
Table 5.30: Comparison between R factors proposed by different codes14	13
Table 5.31: Comparison between R factors proposed by pushover and time history	
analysis	5
Table (A.1): Design section of 3-stories building & 3-Bays & e=2.00m (EBFs)15	1
Table (A.2): Design section of 3-stories building & 3-Bays & e=0.20m (EBFs)15	1
Table (A.3): Design section of 6-stories building & 3-Bays & e=2.00m (EBFs)15	52
Table (A.4): Design section of 6-stories building & 3-Bays & e=0.20m (EBFs)15	52
Table (A.5): Design section of 9-stories building & 3-Bays & e=2.00m (EBFs)15	3
Table (A.6): Design section of 9-stories building & 3-Bays & e=0.20m (EBFs)15	13
Table (A.7): Design section of 12-stories building & 3-Bays & e=2.00m (EBFs) 15	<i>i</i> 4
Table (A.8): Design section of 12-stories building & 3-Bays & e=0.200m (EBFs)15	64
Table (A.9): Design section of 3-stories building & 4-Bays & e=2.00m (EBFs)15	5
Table (A.10): Design section of 3-stories building & 4-Bays & e=0.20m (EBFs)15	5
Table (A.11): Design section of 6-stories building & 4-Bays & e=2.00m (EBFs)15	5
Table (A.12): Design section of 6-stories building & 4-Bays & e=0.20m (EBFs)15	6
Table (A.13): Design section of 9-stories building & 4-Bays & e=2.00m (EBFs) 15	6
Table (A.14): Design section of 9-stories building & 4-Bays & e=0.20m (EBFs)15	7
Table (A.15): Design section of 12-stories building & 4-Bays & e=2.00m (EBFs)15	7
Table (A.16): Design section of 12-stories building & 4-Bays & e=0.200m (EBFs). 15	8

List of Figures

Figure 1.1: EBF configurations and their corresponding plastic mechanism	2
Figure 1.2: Shear Diagram for typical loading.	
Figure 1.3: Moment Diagram for typical loading	3
Figure 1.4: Typical loading.	
Figure 1.5: Angle of the bracing.	4
Figure 1.6: Typical pushover response curve for evaluation of behavior factor (R)	8
Figure 1.7: Constitutive relationship for pushover analyses (FEMA 356)	10
Figure 2.1: Setup and view of the testing model.	19
Figure 2.2: Detailing of the experimental three and one story specimens	20
Figure 2.3: Base shear-third displacement for brace bolted connection	21
Figure 2.4: Base shear-third displacement for brace weld connection	22
Figure 2.5: Web failure of the vertical shear link. a) Specimen 1 b) Specimen 2	22
Figure 2.6: Back view of the web failure of the vertical shear link-specimen 3	23
Figure 2.7: Approximate free-body diagram of eccentric K-brace frame	25
Figure 2.8: Approximate free-body diagram of the eccentric single diagonal brace	
frame.	26
Figure 2.9: EBFs with two braces per bay, a) Eccentric K-braced frame, b) V-brace	
frame.	
Figure 2.10: Typical detail for brace at the non-moment beam-column connection	
Figure 2.11: Mechanism typologies for one-story EB-Frames with inverted Y-schemes	
	30
Figure 2.12: Peak inter-story drift for EBFs with and without slabs (both short link a	
long link designs)	
Figure 2.13: Link rotation demands.	
Figure 2.14: Residual drift for EBFs with and without slabs (both short link and long	_
link designs)	
Figure 2.15: K-frames.	
Figure 2.16: D-frames.	
Figure 2.17: V-frames.	
Figure 2.18: Idealization of the capacity curve	46
Figure 2.19: Intersection of the idealized curve with the demand curve, a) $T^* \le 0$, b)	
$T^* \ge T$	
Figure 3.1: Structural scheme.	
Figure 3.2: Coordinates of the frame system.	
Figure 3.3: Frame system	
Figure 3.4: Dead load	
Figure 3.5: Live load.	
Figure 3.6: Seismic load.	
Figure 3.7: Material properties.	
Figure 3.8: Plastic hinge of the column due to P-M3-M3.	
Figure 3.9: Plastic hinge of beams due to M3.	
Figure 3.10: Plastic hinge of beams due to V2.	
Figure 3.11: Plastic hinge of beams due to V2.	
Figure 3.12: Plastic hinge of bracing due to P.	
Figure 3.13: Load case due to gravity load	
TIBRIC 2.14. LASHOACI IOAN CASC.	…ンソ