

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

IMPROVING HYDROCARBON RECOVERY FROM AN EGYPTIAN RETROGRADE GAS CONDENSATE RESERVOIR, THROUGH THERMAL GAS INJECTION

By **Maged Alaa Taha**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
INTERDISCIPLINARY - MASTER OF SCIENCE
In
GAS PRODUCTION ENGINEERING

IMPROVING HYDROCARBON RECOVERY FROM AN EGYPTIAN RETROGRADE GAS CONDENSATE RESERVOIR, THROUGH THERMAL GAS INJECTION

By **Maged Alaa Taha**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
INTERDISCIPLINARY - MASTER OF SCIENCE
In
GAS PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Eissa Mohamed Shokir	Prof. Dr. Attia Attia
Professor of Petroleum Engineering	Dean of faculty of Energy and
Mining, Petroleum and Metallurgical	Environmental Engineering at British
Engineering Department	University in Egypt
Engineering, Cairo University	

IMPROVING HYDROCARBON RECOVERY FROM AN EGYPTIAN RETROGRADE GAS CONDENSATE RESERVOIR, THROUGH THERMAL GAS INJECTION

By **Maged Alaa Taha**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
INTERDISCIPLINARY - MASTER OF SCIENCE

In
GAS PRODUCTION ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Eissa Mohamed Shokir, Thesis Main Advisor

Prof. Dr. Attia Attia, Advisor

Dean of faculty of Energy and Environmental Engineering at BUE

Prof. Dr. Mahmoud Abu El Ela, Internal Examiner

Exciser Solah Eldis Abdelly are as External Examiner

Engineer Salah Eldin AbdelKareem, External Examiner

Bapetco's Chairman & Managing Director

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Maged Alaa Taha

Date of Birth: 28/9/1995 **Nationality:** Egyptian

E-mail: MagedAlaaTaha@outlook.com

Phone: +201272228586 Address: Cairo, Egypt Registration Date: 1/3/2019 Awarding Date: / / 2021

Degree: Interdisciplinary – Master of Science

Department: Gas Production Engineering

Supervisors:

Prof. Dr. Eissa Mohamed Shokir

Prof. Dr. Attia Attia

Examiners:

Prof. Dr. Eissa Mohamed Shokir (Thesis Main Advisor)

Prof. Dr. Attia Mahmoud Attia (Advisor)

Dean of faculty of Energy and Environmental Engineering at BUE

Prof. Dr. Mahmoud Abu El Ela Mohamed (Internal Examiner) Engineer Salah Eldin Elsayed AbdelKareem (External Examiner)

Bapetco's Chairman & Managing Director

Title of Thesis: Improving Hydrocarbon Recovery from an Egyptian Retrograde

Gas Condensate Reservoir, Through Thermal Gas Injection

Keywords:

Enhanced Gas Recovery, Gas Recycling, Carbon Dioxide Injection, Nitrogen

Injection, Thermal Gas Injection.

Summary:

This work investigates the effects of gas injection (CH₄, N₂ & CO₂) and steam at high temperatures on one of the Western Desert retrograde gas condensate reservoirs. All these injection scenarios have been simulated using Compositional-Thermal ECLIPSE simulator, after exporting the thermal PVT model from the matched compositional PVT model. Thermal CO₂ injection increased the condensate production by 28.9% as it mainly improves the condensate mobility. So, it is mostly applicable for depleted reservoirs when the largest amount of non-producible liquid is already dropped out.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Maged Alaa Taha Date: / / 2021

Signature:

Dedication

This work is dedicated to all my family and friends who helped me accomplish this step.

Acknowledgments

I would like to express my sincere gratitude and appreciation to Bapetco for providing me multifarious valuable experiences. One shall always be indebted to Engineer Salah Abdelkareem, Bapetco's chairman, who I am most grateful to, for affording his precious presence, judging my master's degree, and for his continuous support.

I am deeply grateful to work under the supervision of Prof. Dr. Eissa Shokeir and Prof. Dr. Attia Attia for their valuable guidance, continuous support and rewarding discussion. Moreover, I'd specially want to thank Prof. Dr. Mahmoud Abu El Ela for his great recommendations and valuable guidance.

Additionally, I'd want to provide my thanks to Schlumberger simulation team in Egypt, Apache operational and financial team in Egypt. They have provided us with the necessary software, simulation assurance, operational and economic studies, used to validate this work. Their remarkable feet in this area resembled a challenging mount that we sought to equate in quality or even surpass.

Finally, words will not suffice to credit my parents, sister, fiancé, and my whole family for the praise they deserve.

Maged Taha

Table of Contents

Disclaimer	I
Dedication	II
Acknowledgments	IV
Abstract	X
Chapter 1 : Introduction	1
Chapter 2 : Literature Review	2
2.1 Introduction	2
2.2 Importance of natural gas	2
2.3 Classifications of gas reservoirs	3
2.4 Production management for water driver gas reservoirs and condensate blockage	6
2.5 Enhanced gas recovery methods for retrograde reservoirs	11
2.6 Thermal recovery for retrograde reservoirs	17
2.7 Concluding remarks	25
Chapter 3: Statement of Problem	26
Chapter 4: Compositional and Thermal Simulation	27
4.1 Introduction	27
4.2 General methodology for thermal injection	27
4.5 Methodology implementation	29
Chapter 5: Results and Discussions	33
5.1 Introduction	33
5.2 Depletion case results	34
5.3 Selecting optimum VRR and injection time	34
5.4 Conventional gas recycling and gas injection strategies	36
5.5 Water injection and steam injection	37
5.6 Thermal simulation cases	37
5.7 Temperature profiles versus time	41
5.8 Change in reservoir fluid properties versus time	42
5.9 Conventional gas injection Vs thermal gas injection	43
5.10 Component production comparison for thermal and conventional gas injection	44
5.11 Results for low production depletion scenarios	45
5.12 Operational study	46

5.13 Economic study	46
Chapter 6: Conclusions and Recommendations	49
References	50

List of Figures

Figure 2.1 Phase diagram for retrograde gas condensate reservoirs	4
Figure 2.2 Phase diagram for wet gas reservoirs	5
Figure 2.3 Phase diagram for dry gas reservoirs	6
Figure 2.4 Cumulative production for conventional production method and co-production method	on 7
Figure 2.5 Formation relative permeability relationship	8
Figure 2.6 Reservoir regions classifications due to pressure variation	9
Figure 2.7 Condensate blockage skin and radius	10
Figure 2.8 a) Huff and puff injection technique b) Conventional injection technique	12
Figure 2.9 Dewpoint comparison as function of CO ₂ concentration	13
Figure 2.10 Phase envelope change with CO ₂ concentration	13
Figure 2.11 Injection and production rates for conventional CO_2 injection and acid inje.	ection 15
Figure 2.12 Temperature volume diagram	17
Figure 2.13 CO ₂ pressure temperature diagram	20
Figure 2.14 N ₂ pressure temperature diagram	21
Figure 2.15 CH ₄ pressure temperature diagram	21
Figure 2.16 Insulated tubing heat losses comparison	23
Figure 2.17 Direct fired downhole steam generator	24
Figure 4.1 Flow chart for thermal gas injection general methodology	27
Figure 4.2 Reservoir static model	30
Figure 5.1 Flow chart summarizing results	33
Figure 5.2 Depletion case results	34
Figure 5.3 Injection from day 1 with different VRR	35
Figure 5.4 Injection after depletion with different VRR	35
Figure 5.5 Conventional gas recycling and gas injection strategies	36
Figure 5.6 Water injection and steam injection	37
Figure 5.7 Conventional gas injection Vs thermal gas injection	38
Figure 5.8 Thermal methane injection	38
Figure 5.9 Thermal nitrogen injection	39

Figure 5.10 Thermal carbon dioxide injection	40
Figure 5.11 Temperature profiles over time	41
Figure 5.12 Conventional gas injection versus thermal gas injection	43
Figure 5.13 Component production comparison for conventional and thermal injection	44
Figure 5.14 Results for low production depletion scenarios	45
Figure 5.15 NPV results compared to high production depletion case	47
Figure 5.16 NPV results compared to low production depletion case	48

List of Tables

Table 4.1 Reservoir rock and fluid properties	29
Table 4.2 Thermal rock properties	31
Table 4.3 Listing conventional and thermal gas injection scenarios	32
Table 5.1 Change in reservoir fluid properties	42
Table 5.2 Case definitions for the economic study	48