

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ultrasound Guided Bilateral Superior Laryngeal Nerve Block Compared with Blind Block Technique for Awake Fibre-optic Intubation in Suspected Difficult Intubation

Thesis

Submitted for Partial Fulfillment of Master Degree in Anaesthesia, Intensive Care and Pain Management

By

Al Shaymaa Mortada Ali

M.B.B.Ch., Ain Shams University

Under Supervision of

Prof. Dr. Azza Mohamed Shafik Abd El Mageed

Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Abeer Mohamed Abd El-Aziz El-deek

Assistant Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Sanaa Mohamed El Fawal

Assistant Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Azza Mohamed Shafik Abd El Mageed, Professor of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Prof. Dr. Abeer Mohamed Abd El-Aziz El-deek, Assistant Professor of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. Sanaa Mohamed El Fawal, Assistant Professor of Anaesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Al Shaymaa Mortada Ali

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of Superior Laryngeal Nerve	5
• Fibre-Optic Intubation in Airway Management	12
Clinical Pharmacology of Local Anesthesia	26
Patients and Methods	43
Results	50
Discussion	58
Conclusion	64
Summary	65
References	67
Arabic Summary	

List of Tables

Table N	o. Title	Page No.
Table 1:	Comparison between groups L and groups demographic data	-
Table 2:	Comparison between groups L and gregard heart rate (beat/min)	•
Table 3:	Comparison between groups L and gregard mean arterial blood pressure (m	-
Table 4:	Comparison between groups L and gregard O2% saturation	-
Table 5:	Comparison between groups L and gregard duration of intubation	-
Table 6:	Comparison between groups L and gregard numerical rating scale after 12 h	-
Table 7:	Comparison between groups L and according to numerical rating scale	•
Table 8:	Comparison between groups L and gregard GAG reflex	-

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Superior laryngeal nerve anatomy	7
Figure 2:	Skeletal formula of the lignocaine me showing its aromatic ring, the amide left the basic amine side group	link and
Figure 3:	Local anesthetics consist of a lipoph hydrophilic portion separated by a conhydrocarbon chain	nnecting
Figure 4:	Mechanism of action of local anesthetics	30
Figure 5:	Comparison between groups L and groregard heart rate (beat/min)	-
Figure 6:	Comparison between groups L and groregard mean arterial blood pressure (mi	•
Figure 7:	Comparison between groups L and groregard to 02% saturation	_

List of Abbreviations

Abb.	Full term
A S A	American Society of Anesthesiologists
	Central Nervous System
	Cardiopulmonary bypass
	Difficult Airway Society
ECG	
	5
	Fibre-optic bronchoscope
	Fibre-optic intubation
	Greater horn of hyoid bone
HR	
ibSLN	Internal branch of superior laryngeal nerve
LAST	Local anesthetic systemic toxicity
<i>MAP</i>	Mean arterial pressure
NAP4	4 th National Audit Project
NIBP	Non-invasive blood pressure
NRS	Numerical rating scale
PPS	Pain perception score
	Para-aminobenzoic acid
SD	Standard deviation
	Superior laryngeal artery
	Superior laryngeal nerve
	Thyro-hyoid membrane
UK	
	Volume of distribution
VL	v iaeoiaryngoscopy

INTRODUCTION

Awake fibre-optic intubation is an established airway management technique in the management of the difficult airway. Psychological and pharmacological preparation of the patient plays a pivotal role in technical success of awake fibre-optic intubation (*Ramkumar*, 2011).

Since awake intubation causes discomfort to patients, a variety of techniques have been described to achieve airway anesthesia, such as topical application of local anesthetics and injection of local anesthetic agents at specific anatomic landmarks to block the afferent neural transmission from the oropharynx and larynx (*Ambi et al.*, 2017).

The superior laryngeal nerve (SLN) has its origin from the vagus nerve and descends posterior to the carotid artery towards the larynx. At the level of hyoid bone, it divides into external and internal branches.

The internal branch provides sensory innervation of mucous membrane of the larynx above the level of vocal cords including base of the tongue and epiglottis. The internal branch passes immediately inferior to the greater horn of the hyoid bone and approaches the thyro-hyoid membrane. The external branch provides motor supply to crico-thyroid muscle (*Kundra et al.*, 2011).

In patients undergoing awake fibre-optic intubation, an internal branch of SLN block is frequently performed and is conventionally done by recognizing the greater horn of the hyoid bone and superior horn of the thyroid cartilage as anatomic landmarks (Furlan, 2002).

Ultrasonographic imaging is a novel, portable, noninvasive tool encouraging anesthesia-related airway assessment and procedural interventions. To date, very few case reports are available assessing the usefulness of ultrasound over the conventional landmark-guided technique to block the SLN (Vázquez et al., 2009).

Ultrasound imaging for nerve blocks is more likely to be successful, takes less time to perform, and has a faster onset, longer duration, and fewer complications (such as intravascular or intraneural injection) than the blind method. The same advantages may be possible with ultrasound-guided internal branch of superior laryngeal nerve (ibSLN) block (Manikandan et al., 2010).

intubation and extubation can increase concentration of catecholamines in the blood by stimulating the sympathetic nervous system, resulting in severe hemodynamic changes. However, during intubation, agents such as opioids and propofol can effectively inhibit airway stimulation by endotracheal tubes. During extubation, the withdrawal of anesthetics and the emergence of patients from anesthesia stimulate the sympathetic nervous system, increasing the

release of catecholamines and resulting in cough and hemodynamic responses, including hypertension and tachycardia. Although hemodynamic changes in laryngeal and tracheal tissues during this period are normally well tolerated by healthy individuals, they may be detrimental in hypertensive patients, leading to life-threatening complications such as myocardial ischemia, cardiac arrhythmias, and cerebrovascular hemorrhage, We describe the successful performance of ultrasound-guided bilateral superior laryngeal nerve block to facilitate awake fibre-optic intubation. (Jee, 2003).

AIM OF THE WORK

The aim of this study is to evaluate the effect of ultrasound guided technique for block of internal branch of superior laryngeal nerve in surgical patient in comparison to blind anatomical technique and its effect on hemodynamic changes.

ANATOMY OF SUPERIOR LARYNGFAL NERVE

The superior laryngeal nerve (SLN) originates commonly from the vagus nerve at the level of the C2 vertebra and descends medially toward the thyro-hyoid membrane (TM), the membrane between the thyroid cartilage and the hyoid bone. Its position was found to be mostly symmetrical between the right and left sides (*Monfared*, 2001).

The SLN branch has internal and external branches deep to the internal carotid artery. The internal branch of the superior laryngeal nerve (ibSLN) passes immediately inferior to the greater horn of the hyoid bone, and approaches the TM accompanied by the superior laryngeal artery (SLA), a branch of the superior thyroid artery. Both the ibSLN and the SLA pierce the external surface of the TM (*Gorti and Kim*, 2002).

IbSLN is divided into three branches. The superior branch of the ibSLN innervates the mucosa of the epi-glottis and a small part of the anterior wall of the vallecula. The middle branch is a sensory branch, which innervates the aryepiglottic folds. The inferior branch sends a few twigs to the inter-arytenoid muscle. The ibSLN is sensitive to the laryngeal mucosa down to the level of the vocal folds. It also carries