

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Insulin versus metformin (with or without supplementary insulin) in the control of gestational diabetes mellitus, A randomized control study.

Thesis

Submitted for partial fulfillment of master degree in Obstetrics and Gynecology

By Fatma Taha Ali

M.BBCh, Faculty of Medicine, AlAzhar University for Girls (201 ·)

Supervised by

Prof. Dr. Khaled Ibrahim Ali Abdallah

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Prof. Dr. Sherif Ahmed Ashoush

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed Abbas

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to Allah, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Khaled Ibrahim**Ali Abdallah, Professor of Obstetrics and Gynecology,
Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Sherif Ahmed Ashoush,**Professor of Obstetrics and Gynecology, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Mohamed Abbas,** Lecturer of Obstetrics and Gynecology, Faculty of
Medicine – Ain Shams University, for his great help, active
participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Fatma Taha Ali

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Gestational Diabetes	4
Management of Gestational Diabetes	8
Infant of Diabetic Mother	
Patients and Methods	20
Results	36
Discussion	61
Conclusion	73
Recommendations	74
Summary	75
References	79
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Risk of malformation (Metzger et a	al., 2017)24
Table (2):	Demographic characteristics as studied groups	_
Table (3):	Glycemic control among Metformin	n group37
Table (4):	Gestational age (weeks) among t	
Table (5):	Body mass index (BMI) (kg/m²) studied groups	_
Table (6):	Fasting blood glucose (gm/dL) a studied groups	-
Table (7):	Postprandial blood glucose (gm/o the studied groups	_
Table (8):	HbA1c (%) among the studied grou	ıps46
Table (9):	Maternal complications among to	
Table (10):	Mode of delivery among the studie	d groups50
Table (11):	Neonatal condition among the stud	lied groups51
Table (12):	Comparison according to glycen among Metformin group regarding characteristics	ng baseline
Table (13):	Diagnostic performance of base PPBG and HbA1c in predicting urglycemia	\mathbf{n}
Table (14):	Diagnostic characteristics of FBG, HbA1c cutoff points in uncontrolled glycemia	predicting

Tist of Tables cont...

Table No.	Title	Page No.
Table (15):	Diagnostic performance of baselin PPBG and HbA1c in predicting uncoglycemia	ontrolled
Table (16):	Comparison according to monotherapy and combined regarding Insulin units	insulin
Table (17):	Comparison according to glycemic among Metformin group re Metformin tablets	egarding

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Participant flow diagram	36
Figure (2):	Glycemic control among Metformin	group38
Figure (3):	Gestational age among the studied	groups39
Figure (4):	Body mass index among the studied	l groups41
Figure (5):	Rate of body mass index increase ar studied groups	•
Figure (6):	Fasting blood glucose among the groups	
Figure (7):	Postprandial blood glucose amo studied groups	~
Figure (8):	HbA1c among the studied groups	47
Figure (9):	Maternal conplications among the groups	
Figure (10):	Cesarean delivery among the groups	
Figure (11):	Neonatal birth weight among the groups	
Figure (12):	APGAR scores among the studied g	roups53
Figure (13):	Maternal complications among the groups	
Figure (14):	Comparison according to glycemic among Metformin group regarding FBG	baseline
Figure (15):	Comparison according to glycemic among Metformin group regarding PPBG	baseline

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (16):	Comparison according to glycemic among Metformin group regarding k	paseline
Figure (17):	ROC curve for baseline FBG, PPI HbA1c in predicting uncontrolled gly	
Figure (18):	Diagnostic characteristics of FBG, and HbA1c cutoff points in prouncontrolled glycemia	edicting

Tist of Abbreviations

Abb.	Full term	
ACOG: American College of Obstetrics and Gynecology		
<i>ADA</i>	$\textbf{:} American\ Diabetes\ Association$	
ASD	: Atrial Septal Defect	
<i>BMI</i>	: Body mass index	
CDC	: Centers for Disease Control and evention	
<i>CNS</i>	: Central nervous system	
COA	: Coarctation of Aorta	
HCM	$: Hypertrophic\ cardiomyopathy$	
<i>IDF</i>	$: International\ Diabetes\ Federation$	
<i>MiG</i>	: Metformin in Gestational Diabetes	
PDA	: Patent Ductus Arteriosus	
RCTs	$: Randomized\ controlled\ trial$	
<i>RDS</i>	: Respiratory distress syndrome	
<i>RR</i>	: Relative risk	
SD	: Standard deviation	
SPSS	: Statistical package for social science	
TGA	: Transposition of Great Vessels	
TTNB: Transient tachyopnea of newborn		
VSD	: Ventricular septal defect	

NTRODUCTION

vestational diabetes mellitus (GDM) is among the most frequent and most serious complications following pregnancy (American Diabetes Association, 2018). In Egypt, there are approximately 2 million deliveries per year, therefore assuming a GDM incidence of at least 5% and a 50% rate of GDM women ending up on insulin, the rate of Egyptian GDM women needing insulin would be approximately 50 000 per year, causing a huge medical and economic burden (Abouzeid et al., 2014).

Fetal and neonatal complication of GDM including fetal demise, congenital anomaly, intrauterine fetal macrosomia, birth traumas, hypoglycemia, hyperbilirubinemia, distress, cardiomyopathy, respiratory hypocalcemia, prematurity, and pulmonary hyaline membrane disease. Further complications that may arise from GDM in later stages of metabolic syndrome childhood include and metabolic disorders, such as obesity, hypertension, dyslipidemia, and glucose intolerance (Rastogi & Jain, 2016).

Maternal short- term complications of GDM include increased chance of cesarean section, hyperglycemia crisis, urinary tract infections. and preeclampsia. Moreover. long- term complications include predisposition to developing type 2 diabetes as well as cardiovascular disorders such as hyperlipidemia and hypertension (Saleh et al., 2016).

Metformin is a biguanide hypoglycemic agent that reduces hepatic gluconeogenesis and increases peripheral insulin sensitivity is a rational option for women with GDM (Rowan et al., 2008). Evidence from the Metformin in Gestational Diabetes (MiG) trial showed that, compared with insulin, metformin was not associated with increased prenatal complications although there was an increase in spontaneous preterm births. When asked to choose, metformin was preferred to insulin by GDM women (Hatem El Gamal et al., 2018).

Metformin, being cheap, safe and orally administered, has recently gained wide interest and acceptance for use in GDM, and is currently classified by the FDA among category B drugs for use in pregnancy (Pridjian et al., 2010). It is also included in the National Institute for Health and Care Excellence (NICE) guidelines and the American College of Obstetricians and Gynecologists (ACOG) practice bulletin as a treatment option for GDM (The American College of Obstetricians and Gynecologists, 2013). It seems to be an attractive option, especially for patients in developing countries, where cost and lack of medical insurance are major determinants of any drug's success (Ashoush et al., 2016).

AIM OF THE WORK

The aim of the study is to assess the efficacy of metformin in controlling maternal blood glucose level compared to insulin in women with GDM.