

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Prediction Equation for Spirometric Parameters in Cairo Governorate Adult Population

Thesis

Submitted for the Partial Fulfillment of the Master Degree in Chest Diseases

Presented by

Omar Mohamed Ahmed
M.B.B.C.h.

Supervised by

Prof. Dr/ Gamal Abd Elrahman

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Dr/ Ashraf Al Maraghy

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr/ Gamal Abd Elrahman**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr/ Ashraf Al**Maraghy, Assistant Professor of Chest Diseases,

Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Omar Mohamed Ahmed

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	2
Review of Literature	3
Subjects and Methods	30
Results	37
Discussion	60
Summary	69
Conclusion and Recommendations	73
References	74
Arabic Summary	

Tist of Tables

Table No	o. Title	Page No.
Table 1: Table 2:	Lung volumes and capacities Normal values of selected pediatric production measurements	ulmonary
Table 3: Table 4:	Demographic data of the studied part Comparison between gender of regarding age and anthro	icipants 37 patients opometric
Table 5:	measurements	patients 38
Table 6:	Correlation between sp measurements and each of a anthropometric measurements in male	ige and
Table 7:	Correlation between sp measurements and each of a	irometric age and
Table 8:	anthropometric measurements in fem Linear stepwise regression analysis significantly correlated to FEF ₂₅₋₇₅ as	of factors mong the
Table 9:	studied females Prediction equation of FEF ₂₅₋₇₅ an studied females	nong the
Table 10:	Linear stepwise regression analysis significantly correlated to FEV1an studied females	nong the
	Prediction equation of FEV1among the females	e studied 44
Table 12:	Linear stepwise regression analysis significantly correlated to FVC an studied females	nong the
	Prediction equation of FVC among th females	46
Table 14:	Linear stepwise regression analysis significantly correlated to FEV1/FV the studied females	C among

Tist of Tables cont...

Table No	o. Title	Page No.
Table 15:	Prediction equation of FEV1/FVCame studied females	
Table 16:	Linear stepwise regression analysis of significantly correlated to FEF ₂₅₋₇₅ am studied males	ong the
Table 17:	Prediction equation of FEF ₂₅₋₇₅ amostudied males	ong the
Table 18:	Linear stepwise regression analysis of significantly correlated to FEV1amo studied males	factors ong the
	Prediction equation of FEV1among the males	52
Table 20:	Linear stepwise regression analysis of significantly correlated to FVC amostudied males	ong the
Table 21:	Prediction equation of FVC among the males	studied
Table 22:	Linear stepwise regression analysis of significantly correlated to FEV1/FVC the studied males	factors among
Table 23:	Prediction equation of FEV1/FVC amestudied males	ong the
Table 24:	Comparison between predicted and me spirometric values among the population	studied
Table 25:	Comparison between predicted obtained by prediction equations present study and the selected equatio	values in the
	the literature	

List of Figures

Fig. No.	Title Page	
Figure 1:	Static lung volumes and capacities based on a volume-time spirogram of an inspiratory vital capacity (IVC)	
Figure 2:	Forced expiratory vital capacity maneuvers8	
Figure 3:	Normal maximal expiratory and inspiratory flow-volume curve	
Figure 4:	Measurement of forced vital capacity (FVC)	18
Figure 5:	Summary of spirometry standardization according to ATS	21
Figure 6:	Flow Volume Curve	22

Tist of Abbreviations

Abb.	Full term
ATS-ERS	American Thoracic Society and the European Respiratory Society
CT	Computerized tomography
FEF	Forced mid-expiratory flow rate
FEV ₁	Forced expiratory volume in the first second
FVC	Forced vital capacity
L/S	Liters/seconds
MRI	Magnetic resonance imaging
MVV	Maximal voluntary ventilation
PEF	Peak expiratory flow
PEFR	Peak expiratory flow rate
TV	Tidal volume
VC	Vital capacity

Introduction

pirometry is a vital investigation carried out by most pulmonologists. Interpretation of spirometry data classifies the severity of the underlying obstructive or restrictive abnormality. However, the interpretation of normal and disease depends on the predicted values. The predicted values depend mainly on anthropometry parameters, gender and ethnicity, though environmental, genetic, socioeconomic, and technical factors also contribute (Chhabra, 2009).

Spirometry is the most frequently performed lung function test. The predicted values depend mainly on anthropometry parameters, gender and ethnicity, though environmental, genetic, socioeconomic and technical factors also contribute. Wide variations have been observed in diverse ethnic groups. Reference formulas are used to determine a normal range of spirometry results. Reference values play an important role in establishing the volumes measured in an individual fall within a range to be expected in a healthy person of the same gender, height, age and geographic location (Ostrowski et al., 2005).

Desai et al. (2016) developed prediction equations for spirometry parameters for the western Indian population. Proposing updated regression equations for spirometric variables for the adult population is useful in management of patients with respiratory diseases. Various factors interplay a role in the vast variations of lung functions. They suggested significant correlation of the weight parameter with FVC, FEV1, and PEFR.

AIM OF THE WORK

- (1)To develop prediction equations for pulmonary function parameters in a sample of the adult Egyptian population of Cairo governorate.
- (2)To compare them with international reference figures used in our spirometric lab facilities.

REVIEW OF LITERATURE

Pulmonary Function Tests

()ulmonary function tests in pediatric age group are an essential component of the diagnosis and monitoring of different pulmonary disease process. It is often claimed that assessment of the pulmonary function tests will help diagnosis, assist prognosis, and monitor disease progress and measure the effect of the therapeutic intervention (Hammer and Eber, **2005**). Evaluating lung function in this age group is important, not only for clinical reasons, but also due to the considerable growth and development of the respiratory system that occurs, with associated changes in lung mechanics (Beydon et al., 2007).

Mechanical properties of the respiratory system:

The total volume of gas in the lungs is conventionally subdivided into compartments (volumes) and combinations of two or more volumes (capacities).

1. Static lung volumes:

Table 1: Lung volumes and capacities (Wanger et al., 2005)

Term	Symbol	Definition
Tidal Volume	T.V	The volume of air inspired or expired with ten normal quite breath.
Inspiratory reserve volume	IRV	The air inspired with maximal inspiratory effort in excess of tidal volume.
Expiratory reserve volume	ERV	The volume expelled by an active expiratory effort after passive expiration
Residual volume	R.V	The air left in the lungs after maximal expiratory effort.
The functional residual capacity	FRC	The volume at the end of quite tidal expiration it equals R.V plus ERV.
The inspiratory capacity	IC	The maximal volume of air that can be inhaled from the end of quiet tidal expiration. It equals T.V plus IRV.
The vital capacity	VC	The largest amount of air that can be expired after a maximal inspiratory effort. It equals IRV plus ERV.
Total lung capacity	TLC	The volume of air expanding the lung with the greatest possible inspiratory effort it equals V.C plus R.V.