

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Role of MRI Diffusion Tensor Imaging in early diagnosis of Cervical Spondylotic Myelopathy (CSM)

Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

By

Ahmed Mahmoud Mohammed Ismail M.B., B.Ch

Supervised by

Prof. Dr. Maha Abdel Meguid El-Shinnawy

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Omar Farouk Kamel

Lecturer of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Dr. Sherine Ibrahim Elwan

Lecturer of Radiodiagnosis Matareya Teaching Hospital

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Maha Abdel Meguid El-Shinnawy**, Professor of Radiodiagnosis - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Omar Farouk Kamel,** Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Sherine Ibrahim Elwan**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ahmed Mahmoud Mohammed Ismail

ABSTRACT

Cervical compressive myelopathy represents a clinicoradiological challenge due to the mismatch between the patients' presentations and the conventional MR findings caused by its lack of detection of detailed cervical cord microstructural changes.

Although conventional MRI is the gold standard for radiographic evaluation, it has a limited application for determining prognosis and recovery.

In the last decade, Diffusion tensor imaging (DTI) parameters which are based on the preferential diffusion of water molecules, provide a promising imaging technique in the detection and evaluation of early spondylotic myelopathy changes before its establishment in conventional T2 images of MRI. In our study we correlated the FA values of the cervical cord opposite normal disc, affected disc and below affected disc levels.

Key words: MR diffusion tensor imaging; Fractional anisotropy; European myelopathy score; Cervical spondylotic myelopathy

List of Contents

Title	Page No.
List of Abbreviations	i
List of Figures	iii
List of Tables	vi
Introduction and Aim of The Work	1
Review of Literature	
Chapter (1): Anatomy of the Cervical Spinal Cor	·d4
Chapter (2): Pathophysiology of Cervical Spondylotic Myelopathy	10
Chapter (3): Diagnosis of Cervical Spondylosis & Related Myelopathy	
Chapter (4): DTI Physical Principles and Technique	46
Chapter (5): Normal DTI Findings of the Cervice Spinal Cord	
Chapter (6): DTI Findings in Cervical Spondylot Myelopathy	
Patients and Methods	81
Results	88
Illustrative Cases	100
Discussion	121
Conclusion	127
References	128
Arabic Summary	١١

List of Abbreviations

Abb.	Full term
<i>ADC</i>	Apparent diffusion coefficient
	Anisotropy index
ALS	Amyelotropic lateral sclerosis
BSCB	Blood spinal cord barrier
CNS	Central nervous system
<i>CSF</i>	Cerebrospinal fluid
<i>CSM</i>	Cervical spondylotic myelopathy
<i>CSS</i>	Congenital canal stenosis
<i>CTM</i>	Computed tomography myelography
DTI	Diffusion tensor imaging
DWI	Diffusion weighted imaging
EMG	Electromyography
<i>EMS</i>	European myelopathy score
<i>FA</i>	Fractional anisotropy
<i>GM</i>	Gray matter
<i>IAR</i>	Instantaneous axis of rotation
<i>JOA</i>	Japanese orthopedic association
<i>lADC</i>	Longitudinal apparent diffusion coefficient
<i>MD</i>	Mean diffusivity
<i>MEP</i>	Motor evoked potential
<i>mJOA</i>	Modified Chile's Japanese orthopedic association
MRA	Magnetic resonance angiography

List of Abbreviations (Cont...)

Abb.	Full term
MRI	
NCS	Nerve conduction study
<i>OLF</i>	Ossification of ligamentum flavum
OPLL	Ossification of the posterior longitudinal ligament
<i>RD</i>	Radial diffusivity
<i>ROI</i>	
SC	Spinal cord
SCI	Spinal cord injury
SEP	Somatosensory evoked potential
<i>tADC</i>	Transverse apparent diffusion coefficient
<i>TMS</i>	Transcranial magnetic stimulation
<i>WM</i>	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Overview of the cervical spine and b	ones5
Figure (2):	Spinal ligaments	6
Figure (3):	Anatomy of spinal cord	8
Figure (4):	Blood supply of the spinal cord	9
Figure (5):	Degenerative changes that contraction compression of the spinal cervical myelopathy	l cord in
Figure (6):	Foramen magnum stenosis in a canondroplasia	
Figure (7):	Atlantoaxial instability in syndrome	_
Figure (8):	Cervical spine postural changes rethe degenerative process will lead spondylotic spine	d to the
Figure (9):	Pathophysiological and biochemical of cervical spondylosis.	
Figure (10):	Romberg's test	
Figure (11):	Grip and release test	
Figure (12):	Hoffman's test	28
Figure (13):	Lateral plain radiograph of the cerv	ical spine
	demonstrating spondylotic changes.	37
Figure (14):	Torg-Pavlov ratio	38
Figure (15):	Lateral plain radiograph of the cerv demonstrating focal kyphosis	
Figure (16):	Reformatted Sagittal CT image osteophytosis & segmental OPLL b cervical vertebra	$_{ m ehind}$ $4^{ m th}$
Figure (17):	The routine MR T2WI image demo C5/6 intervertebral disc herniat thickness of the posterior lon ligament	tion and gitudinal

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Sagittal T2 MRI image in neutra	
Figure (19):	Sagittal T2-weighted magnetic image demonstrating disk complex with impingement on toord and associated hyperintense si	osteophyte the spinal
Figure (20):	Pictorial diagram of isotropic and a diffusion	-
Figure (21):	D matrix for DTI (I) and diffusion (II)	
Figure (22):	The number of parameters require to describe the ellipsoid in space	
Figure (23):	The diffusion-driven random traje single water molecule during diffus	•
Figure (24):	Illustration of the diffusion random a single water molecule from to location to the red location	the green
Figure (25):	Schematic representations of displacement distributions for the tensor	diffusion
Figure (26):	Diagram shows the cellular elem- contribute to diffusion anisotropy	
Figure (27)	Diagram shows the 3D diffusion production	•
Figure (28):	Graphical display of water moleculat different rates through the gray recerebrospinal fluid (CSF)	natter and
Figure (29):	Sample of an axial DWI, ADC, FA coded (cFA) image of the brain	
Figure (30):	Schematic representation of diffus images (DTI)-derived metrics	

List of Figures (Cont...)

Fig. No.	Title Pa	ige No.
Figure (31):	Graphical display of the range of iso towards anisotropic diffusion as ca observed in the various regions of the bra	n be
Figure (32):	The principal direction of diffusion principles of tractography.	
Figure (33):	Abstract representation of tensors	68
Figure (34):	Sagittal T2 MR image of the cervical spin normal subject with the corresponding T2 images at each cervical level	axial
Figure (35):	Scatter plots showing the relation between FA and age	nship
Figure (36):	Sagittal color-coded FA and ADC maps healthy subject	
Figure (37):	Diffusion MRI and detection of cervical changes in patients with narrow ce canals despite normal T1 and T2 wei images	rvical ghted
Figure (38):	Sagittal T2-weighted image of the cespine with FA map of the spinal cord	
Figure (39):	Spinal injuries	
Figure (40):	Sensitivity and specificity of FA	
Figure (41):	Sensitivity and specificity of ADC	
Figure (42):	A 30-year-old male presented with symptocrelating with grade 1 according to EN	ptoms
Figure (43):	A 59-year-old female presented with classymptoms corresponding to grad according to EMS	le 2
Figure (44):	A 55-year-old female presented with sym- correlating with grade 3 according to EM	-

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (45):	A 52-year-old female presented w picture correlating with grade 3 a EMS.	ccording to
Figure (46):	A 55-year-old female presented w symptoms correlating with grade 1 to EMS.	1 according
Figure (47):	A 61-year-old female presented w symptoms correlating with grade 2 to EMS	2 according
Figure (48):	A 37-year-old female presented w symptoms correlating with grade 1 to EMS	1 according
Figure (49):	A 42-year-old male presented with picture correlating with grade 1 at EMS	ccording to
Figure (50):	A 55-year-old male presented wisymptoms correlating with grade 5 to EMS	3 according
Figure (51):	A 54-year-old female presented w symptoms correlating with grade 2 to EMS.	2 according

List of Tables

Table No.	Title	Page No.
Table (1):	Pathophysiological factors invo cervical myelopathy	
Table (2):	European myelopathy scoring syste	m 31
Table (3):	Means & SDs for whole cord FA & different cervical levels	
Table (4):	Demographic data of the studied pa	tients 88
Table (5):	Distribution of the studied according to the European my score.	elopathy
Table (6):	Most affected disc distribution in th	
	patients.	90
Table (7):	Number of patients with FA valuvalues and T2WI representing negative myelopathic changes com EMS	ative and pared to
Table (8):	Mean FA and ADC values at sternon-stenotic segments of cervica cord	notic and al spinal
Table (9):	The cutoff values of FA and ADC cervical spinal cord segment	at each
Table (10):	The sensitivity, specificity, predictive value and negative produce of FA and ADC in predictive myelopathy changes respectively	positive oredictive iction of 95
Table (11):	Area under the curve of FA value from levels	97
Table (12):	Area under the curve of ADC va	