

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Effect of intrauterine infusion of autologous platelet rich plasma in patients with refractory thin endometrium undergoing in vitro fertilization

Thesis

Submitted for partial fulfillment of Master degree in Obstetrics and Gynecology

By

Aya Mohsen Zaki

M.B.B.Ch., 2014 Resident in Al-Agouza Police Hospital

Under Supervision of

Prof. Hatem Hussein El-Gamal

Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University

Prof. Amany Ahmed Osman

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Prof. Mostafa Fouad Gomaa

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Mohamed Mahmoud Salman

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Hatem Hussein El-Gamal,** Professor of Obstetrics and Gynecology,, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Amany Ahmed Osman,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Prof. Mostafa Fouad Gomaa**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

I can't forget to thank with all appreciation **Dr. Mohamed Mahmoud Salman,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, whom tirelessly and freely gave comments on various drafts of this piece of work regarding the ozone work.

Last but not least, I would like to thanks all members of ART unit and Clinical Pathology Department, for their positive cooperation and help in the Practical part of this work.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🖎 Aya Mohsen Zaki

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Work	9
Review of Literature	
Endometrial physiology "vascularity, implantation and receptivity"	10
Standard treatment of thin endometrium	45
Platelet rich plasma for treatment of thin endometrium	60
Patients and Methods	71
Results	86
Discussion	104
Summary	121
Conclusions and Recommendations	126
References	128
Arabic Summary	_

List of Abbreviations

Abbr. Full-term

ACD-A : Acid citrate dextrose solution A

AMH : Anti-Müllerian hormone

APCs : Antigen-presenting cells

ART : Assisted reproductive technology

avb3 : Alpha v/beta 3 integrin

BMI : Body mass index

cAMP : Cyclic adenosine monophosphate

CAMs : Cellular Adhesion Molecules

CD : Cluster of differentiation

cGMP : Cyclic guanosine monophosphate

CI : Confidence interval

CL : Corpus luteum

COX-2 : Cyclooxygenase-2

CSF-1 : Colony stimulating factor-1

CTGF : Connective tissue growth factor

DCs : Dendritic cells

DSCs: Decidual stromal fibroblast cells

E2 : Estradiol E2

ECM : Extracellular matrix

EGF : Epidermal growth factor

EMSCs : Endometrial mesenchymal stem cells

EMT : Endometrial thickness

ERA : Endometrial receptivity array

ESCs: Endometrial stromal fibroblast cells

ESR1 : Estrogen receptor alpha

ET : Embryo transfer

EVCTs : Extravillous cytotrophoblast cells

FBC: Full blood count

FET : Frozen embryo transfer

FSH : Follicle-stimulating hormone

GAS1 : Growth Arrest Specific 1

GFs : Growth factors

GM-CSF: Granulocyte monocyte colony stimulating factor

GnRH : Gonadotropin releasing hormone

GS : Gestational sac

hCG: Human chorionic gonadotropin

HGF : Hepatocyte growth factor

HLA: Human leukocyte antigen

HRT : Hormone replacement therapy

HSD17βII : 17β -hydroxysteroid dehydrogenase-type 2

ICM : Inner cell mass

ICSI : Intracytoplasmic sperm injection

IGFBP-1: Insulin like growth factor binding protein

IL : Interleukin

IM : Intramuscular

IQR : Interquartile range

IR : Implantation rate

IS : Implantation sites

IVF : In vitro fertilization

LH : Luteinizing hormone

LIF-R: LIF receptor

L-PRP: Leukocyte PRP

MBSCs: Bone marrow stem cells

MMP-3 : Metalloproteinase-3

MRI : Magnetic resonance imaging

MS: Mid-secretory

MUC-1 : Mucin-1

NAD : Nicotinamide adenine dinucleotide

NMES : Neuromuscular electrical stimulation

NO : Nitric oxide

OCP : Oral contraceptive pill

OPU : Ovum pick up

P4 : Progesterone

PDGF : Platelet-derived growth factor

pET : Personalized embryo transfer

PGE2 : Prostaglandin E2

PGT: Pre-implantation genetic testing

PPP : Platelet poor plasma

P-PRP: Leukocyte-poor or pure PRP

PR : Progesterone receptor

PRP : Platelet rich plasma

REA : Repressor of E2 activity

RIF : Recurrent implantation failure

RPM: Revolution per minute

RR : Risk ratio

S.C : Sub cutaneous

SD : Standard deviation

sFLT1 : FMS-like tyrosine kinase 1

SMA : Smooth muscle actin

SVF : Stromal vascular fraction

TE: Trophectoderm

TGF-β : Transforming growth factor-beta

TNF-\alpha: Tumor necrosis factor-alfa

Treg T: Regulatory T

TSH: Thyroid stimulating hormone

TV U/S : Transvaginal ultrasound

uNK : Uterine natural killers

VEGF : Vascular endothelial growth factor

WOI : Window of implantation

ZP : Zona pellucida

List of Tables

Table No.	. Title	Page	No.
Table (1):	Baseline characteristics descri among study group (n=79)		87
Table (2):	Hormonal Profile descriptive ar study group (n=66)	_	89
Table (3):	Number of follicles >17mm triggering day, Retrieved oocytes total Gonadotropins Dose descriamong study group (n=66)	and ptive	90
Table (4):	EMT comparison with D1 vs. D2 D3 among study group (n=66) in transferred cycle.	n the	92
Table (5):	Endometrial pattern distribution ar study group (n=66) in the transf cycle	erred	94
Table (6):	Outcomes of embryo transferred c among study group (n=66)	•	96
Table (7):	Effect of baseline characteristics chemical pregnancy (Positive Negative)	and	98
Table (8):	Effect of EMT "mm" on cher pregnancy (Positive and Negative)		99
Table (9):	Effect of endometrial pattern chemical pregnancy (Positive Negative).	and	100
Table (10):	Effect of hormonal profile on cher pregnancy (Positive and Negative).		102

Table (11):	Multivari	ate	binary	logistic	regression	
	analysis	of	risk	factors	affecting	
	chemical	preg	nancy.			103

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Endometrial blood supply	14
Figure (2):	Endometrial implantation Hi implantation is a process that couldivided into apposition, adheattachment, invasion/penetration decidualization.	lld be esion/ and
Figure (3):	Role of dendritic cells (DCs) macrophages (the major ar presenting cells in the endometrium implantation	ntigen m) in
Figure (4):	Proposed roles of uterine dendritic (DCs) in the regulation of angioge and T cell action at the maternal interface	enesis I-fetal
Figure (5):	The different types of recuimplantation failure (RIF)	
Figure (6):	P4 action and implantation	39
Figure (7):	Measurement of EMT	46
Figure (8):	Pie chart type of infertility distrib among study group	
Figure (9):	Cycle cancellation rate distrib among study group	
Figure (10):	EMT comparison with D1 vs. D2 D3 among study group	

Figure (11):	Endometrial pattern distribution among study group (n=66) in the transferred cycle.	. 95
Figure (12):	Bar chart outcome of embryo transferred cycles among study group	. 97
Figure (13):	Pie chart miscarriage distribution among study group	. 97
Figure (14):	Effect of endometrial pattern on chemical pregnancy (Positive and Negative).	101
Figure (15):	Effect of EMT "mm" and pattern on chemical pregnancy (Positive and Negative)	101

ABSTRACT

Background: Since the first introduction of (IVF-ET), the technology has evolved rapidly, and the pregnancy rate with it has significantly increased. However, treatment of refractory thin endometrium during IVF is a relatively challenging problem, considering that optimal endometrium thickness is one of critical factors for successful implantation and pregnancy. Autologous intrauterine PRP infusion is an adjuvant therapeutic alternative for enhancing the EMT and Echo pattern. It was settled that PRP could expand EMT and improve pregnancy outcomes with its high content of growth factors and cytokines in addition to its role in regulation of immunological interaction between embryo and endometrium.

Aim of the work: The aim of the study is to evaluate the effect of autologous PRP in improving the ongoing pregnancy rate in patients with refractory thin endometrium undergoing IVF.

Patients and Methods: After explanation of the nature of the study, ethical committee approval and written consents would be obtained from patients, this prospective single arm clinical trial was performed on a total number of 85 infertile women with a refractory thin endometrium, characterized by atrophy with endometrial interface measurements below 7 mm by ultrasound on the day of hCG injection in fresh ET cycle, which does not respond to standard medical therapies after more than 2 cycles of previous medical therapy,6 cases were excluded (2 cases declined to participate and 4 cases withdrawn from the study) and 13 cases were cancelled (6 cases had poor ovarian response, 3 cases had poor quality embryos,1case had degenerated egg, and 3 cases were COVID 19 positive), who were candidates for IVF cycle at the ART Unit of Ain Shams University Maternity Hospital in a period from January 2021 and August 2021 with the same inclusion and exclusion criteria using long luteal phase GnRHa protocol.

Results: There was statistically significant increase in EMT "mm" and enhancement of endometrial pattern after intrauterine PRP infusion with p-value < 0.001 for both of them. Regarding EMT ((6.19 \pm 0.34) mean EMT on D1 (day of hCG injection in fresh IVF cycles & PRP infusion vs, (7.75±0.48) mean EMT on D2 (the day of OR), and (8.97±0.65) on D3 (day of ET)) and according to endometrial patterns on D1 (15.2%, 47% and 37.9%) of patients had patterns A, B and C, respectively vs, D2 (47%,45.5% and 7.6%) of patients had patterns A, B and C, respectively, and D3 (51.5% and 48.5%) of patients had patterns A, B and C, respectively. Regarding risk factors affecting chemical pregnancy; multivariate analysis of current study revealed that EMT (mm) and endometrial pattern at D2 and D3 were the best independent predictors of chemical pregnancy, with statistically significant difference between chemical pregnancy (positive and negative) according to EMT and pattern as [OR (C.I.95%), p-value] were [2.452 (0.674- 8.924) 0.037] and [2.869 (0.789-10.441), p-value 0.043] respectively. Regarding outcomes of embryo transferred cycles; statistical analysis of current results showed that there were high positive pregnancy results (implantation, chemical, clinical and ongoing pregnancy and miscarriage rates) as a result of intrauterine PRP infusion. Conclusion: As evident from the current study, Intrauterine PRP infusion as an adjuvant on day of hCG injection, significantly improved EMT and endometrial pattern distribution at the days of OR and ET of infertile women with refractory thin endometrium. EMT (mm) and endometrial pattern at the day of OR and at the day of ET were the most significant independent predictors of chemical pregnancy. Autologous intrauterine PRP infusion had some aspects to restore the damaged endometrium, not only increasing the EMT but also enhancing the endometrial vascularity & receptivity. Implantation rate, chemical, clinical and ongoing pregnancy rates were significantly improved and miscarriage rate was significantly decreased as a result of intrauterine PRP infusion.

Keywords: Platelet rich plasma (PRP), Embryo transfer (ET), Endometrial thickness (EMT), In vitro fertilization (IVF), Human chorionic gonadotropin (hCG), Assisted Reproductive Technique (ART), Gonadotropins releasing hormone agonist (GnRHa).