

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

USING DIFFERENT COAGULANTS TO IMPROVE COAGULATION PROCESS AND DRINKING WATER QUALITY

Submitted By Reham Adel Ali Abobaker

B.Sc. of Science, (Chemistry), Faculty of Science, Ain Shams University, 2000

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Faculty of Graduates Studies & Environmental Research Ain Shams University

APPROVAL SHEET USING DIFFERENT COAGULANTS TO IMPROVE COAGULATION PROCESS AND DRINKING WATER QUALITY

Submitted By Reham Adel Ali Abobaker

B.Sc. of Science, (Chemistry), Faculty of Science, Ain Shams University, 2000

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree In

Environmental Sciences Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Hanan Sayed Abd El-Rahman

Prof. of Waste Water Treatment Technology National Research Center

2-Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Chemistry, Department of Environmental Basic Sciences - Faculty of Graduates Studies & Environmental Research Ain Shams University

3-Prof. Dr. Mostafa Mohamed Hassan Khalil

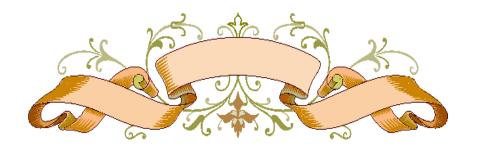
Prof. of Analytical & Inorganic Chemistry Faculty of Science Ain Shams University

USING DIFFERENT COAGULANTS TO IMPROVE COAGULATION PROCESS AND DRINKING WATER QUALITY

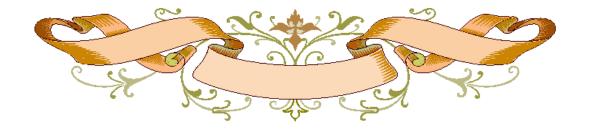
Submitted By Reham Adel Ali Abobaker

B.Sc. of Science, (Chemistry), Faculty of Science, Ain Shams University, 2000

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences


Under The Supervision of:

1-Prof. Dr. Mostafa Mohamed Hassan Khalil


Prof. of Analytical & Inorganic Chemistry Faculty of Science Ain Shams University

2-Dr. Nabil Ahmed Abdullah Mohammed Alsagheer

Executive Director OF Ressearch, Development & Scientific Consultations Aluminum Sulfate CO.of Egypt

Acknowledgement

ACKNOWLEDGEMENT

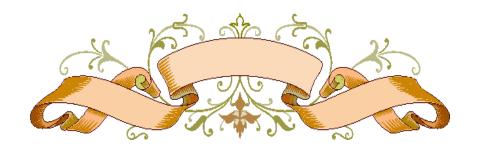
Firstly, Alhamdulillah, praise to Allah for giving me this wonderful opportunity and strength to complete such a meaningful journey of my life.

I would like to express my sincere gratitude to **Prof. Dr. Mostafa Mohamed Hassan Khalil,** (Prof. of Inorganic and Analytical

Chemistry, Faculty of Science, Ain Shams University) for the

continuous support of my M.SC study and related research, for his

patience, motivation, and immense knowledge.


A huge appreciation goes out to my advisor, **Dr. Nabil Ahmed AbdullahMohammed Alsagheer**, (Director of Research,
Development and Scientific Services, Egyptian Aluminum Sulfate
Co), for sharing his knowledge and experiences during my study,
guidance helped me in all the time of research and writing of this
thesis, and support throughout this journey.

I also dedicated this appreciation to my colleagues in **Holding**Company for Water and Wastewater.

Special thanks to my beloved family especially my parents, my brother and my sister for their encouragement and prayers in helping me going through the hardship of my academic dream. Most important, my deepest appreciation goes out to my helpful husband, Hany Makled for his effort, strong enthusiasm and patience. Thank you for supporting me and my dreams.

Finally, dedicate this work to my beloved sons

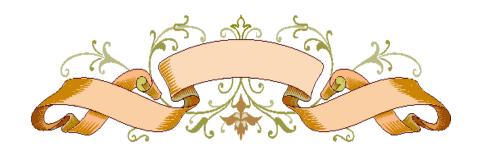
Marwan, Mohand & Omar.

Abstract

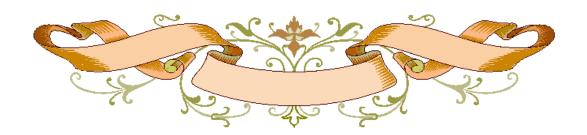
ABSTRACT

Name: Reham Adel Ali Abo Baker

Title of thesis: Using Different Coagulants To Improve Coagulation

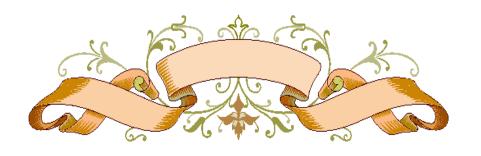

Process And Drinking Water Quality

Degree: (M.Sc.) Master of environmental sciences thesis, department of environmental basic sciences, institute of environmental studies and research, Ain Shams University, 2021.


This study aims to investigate acceptable approach to enhance coagulation for TOC (DBD precursors), turbidity and aluminum minimization using aluminum and iron based coagulants in drinking water treatment, single and dual dosing with aluminum sulphate and ferric chloride coagulants. Once the condition for optimized coagulation has been determined by Jar tests, TOC was evaluated under baseline coagulation conditions and optimized coagulation. Jar tests were conducted to simulate the conventional processes of water treatment. Enhanced coagulation used the traditional alum that is already applied in water treatment in Egypt, with a comparison with ferric chloride and mixture of alum and ferric chloride, the strategy of enhanced treatment adopted mainly organic matter and THMs beside turbidity, so the doses of coagulant were increased to achieve better removal of THMs which have a health issue. Conventional treatment processes including addition of aluminum sulphate or ferric chloride to the raw water followed by coagulation, sedimentation and rapid sand filtration are important step in water purification; they reduced the organic matter to about 42% and THMs to 37 using the baseline dose (25 mg/l). The enhanced coagulation process by increasing the dose of alum reduced the total organic carbon and THMs to 57 % and 54 % respectively. Using of ferric chloride at a baseline dose reduced TOC and THMs by 40 % and 36% respectively, while enhanced coagulation by increasing the dose of ferric chloride (at a dose of 35 mg/l) raised up the removal of TOC and THMs to 47 % and 44% respectively. The dual coagulant of alum and ferric chloride achieved 47% removal of TOC and 36% for THMs at a dosage of 25 mg/l, while the enhanced coagulation by increasing the dose of duel coagulant of alum and ferric chloride (35 mg/l) raised up the removal of TOC to 61% and THMs to 50%. The advantageous of the dual coagulant is higher reduction of residual aluminum and THMs, this attributed to the enhancement of flocculation which create activated adsorption sites of flocs surfaces.

KEY WORDS

Water, Water treatment, Coagulation, TOC, THMs, Enhanced coagulation, Flocculation, Optimization, Evaluation


List of Contents


LIST OF CONTENTS

	Page
Subject	No.
ABSTRACT	I
CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	IX
CHAPTER I: INTRODUCTION	1
CHAPTER II: REVIEW OF LITERATURE	5
2.1 Water Purification	5
2.2 Coagulation And Disinfection	9
2.3 Enhanced Coagulation Process	17
2.4 Method For Achieving Enhanced Coagulation	20
2.5 Types Of Reactions By Chlorine With Organic Compounds:	27
2.6 Reactions Of Chlorine With NOM	28
2.7 Factors Affecting Dbps Formation	30
CHAPTER III: MATERIALS AND METHODS	35
3.1 Study Area	35
3.2 Sampling Procedure	35
3.3 Field Parameters	36
3.4 Equipment	38
3.5 Materials	38
CHAPTER IV: RESULTS AND DISCUSSION	43
4.1 Characteristics Of The Raw Water Used In Shubra Alkhayma Water Treatment Plant	44
4.2 Coagulant dose optimization using of different inorganic coagulants in water treatment	51
4.3 Effect of increasing coagulants dosage on water alkalinity and pH	52
4.4 Water turbidity	53
4.5 Effect of coagulant type and dose on NOM reduction	53
4.6 Residual aluminium	56
4.7 Using of ferric chloride	57
4.8 Using of Dual coagulant	59
4.9 Effect of coagulant type	62
4.10 Effect of NOM type	61

	Page
Subject	No.
4.11 Trihalomethanes THMs	63
4.12 Coagulation conditions effect	64
4.13 Enhanced coagulation benefits	64
4.14 Effect of coagulant dose on THMs	64
CHAPTER V : CONCLUSION AND RECOMMENDATIONS	67
5.1 Conclusion	67
5.2 Recommendations	68
SUMMARY	69
REFERENCES	73

List of Tables

