

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Monitoring osmotherapy in traumatic brain injury patients: correlation between ultrasound assessment of optic nerve sheath diameter and computed tomography scan

Thesis

Submitted for Partial Fulfillment of Master Degree in Intensive Care

 \mathfrak{P}_{χ} Hossam Mohammed Mohammed Elmorshedy $_{M.B.B.CH}$

Under supervision of

Prof. Dr. Galal Adel Alkady

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Salwa Omar Flkhattab Amin

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Waleed Abdallah Ibrahim

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Galal Adel Alkady**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Salwa Omar Elkhattab Amin,** Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Waleed Abdallah Ibrahim,** Assistant Professor of Anesthesiology, Intensive Care
and Pain Management, Faculty of Medicine, Ain Shams
University, for his great help, active participation and guidance.

Hossam Mohammed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Traumatic Brain Injury	4
Brain Edema and ICP	14
Monitoring of Intracranial Pressure	29
Optic Nerve Sheath Diameter & Ocular Ultraso	ound37
Osmotic Therapy in Traumatic Brain Injury	47
Subjects and Methods	52
Results	58
Discussion	71
Conclusion	80
Limitation	81
Summary	82
References	
Arabic Summary	

List of Abbreviations

Abb. Full term	
ABG Arterial blood gases	
AMPA α -amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid	
AMS Acute Mountain sickness	
ASDH Acute subdural hematoma	
AUC Area under curve	
AV fistula Arteriovenous fistula	
BBB Blood-brain barrier	
CBC Complete blood count	
CBF Cerebral blood flow	
CDC Centers for Disease Control and Prevention	
CNS Central nervous system	
CPP Cerebral perfusion pressure	
CSF Cerebrospinal fluid	
CTComputed tomography	
DAI Diffuse axonal injury	
DKA Diabetic ketoacidosis	
EDH Epidural Hematoma	
EVD External ventricular drain	
FLAIR Fluid-attenuated inversion recovery	
FV Flow velocity	
GCS Glasgow Coma Scale	
HACE High-altitude cerebral edema	
ICH Intracerebral haemorrhage	
ICP Intracranial pressure	
IOP Intraocular pressure	
MAP Mean systemic arterial pressure	
MRI Magnetic resonance imaging	

List of Abbreviations Cont...

Abb.	Full term
NMDA	N- Methyl D- Aspartate
ON	Optic nerve
ONSD	Optic nerve sheath diameter
RBS	Random blood glucose
RGC	Retinal ganglion cell
SAH	Subarachnoid haemorrhage
SS	Single Shot
TBI	Traumatic brain injury
TCD	Transcranial Doppler
TMD	Tympanic membrane displacement
US	Ultrasound
USG	Ultrasonography
VRIs	Ventriculostomy-related infections

List of Tables

Table No.	Title	Page No.
Table (1):	A Description for the Incl	
Table (2):	Demographic characteristics with increased ICP:	-
Table (3):	Follow up of vital data among with increased ICP along 3 suc	-
Table (4):	Follow up of laboratory par studied patients with increas successive days	sed ICP along 3
Table (5):	Follow up of right optic nerve before and after mannitol patients with increased ICP a days	among studied long 3 successive
Table (6):	Follow up of left optic nerve before and after mannitol patients with increased ICP a days	among studied long 3 successive
Table (7):	Follow up of brain edema patients with increased ICP adays	long 3 successive
Table (8):	Relation between CT brain of ONSD in third day before and	<u> </u>
Table (9):	Relation between CT brain ONSD in third day before and	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The inter-relationship between secondary injury in TBI is sho physiological insults can poten and lead to exacerbation of secon	wn. Secondary tiate ischemia
Figure (2):	A 19-year-old male patient with injury and Glasgow Coma Scale a motorcycle accident	score of 8 after
Figure (3):	Contributing events in the path Secondary Brain Injury	
Figure (4):	Stages of cerebral edema	19
Figure (5):	Invasive methods of measuring l	ICP30
Figure (6):	Image from Lundberg's 1960 Continuous recording and ventricular fluid pressure in practice	control of neurosurgical
Figure (7):	Optic nerve segments	38
Figure (8):	Longitudinal section of a normal nerve showing the sheath in its o	-
Figure (9):	Ocular sonography of the optic n	erve sheath44
Figure (10):	A) show how to measure ON difference between normal and is	•
Figure (11):	Follow up of right optic nerve sh before mannitol among studied increased ICP along 3 successive	patients with

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (12):	Follow up of right optic nerve s after mannitol among studied increased ICP along 3 successive	patients with
Figure (13):	Follow up of left optic nerve sl before mannitol among studied increased ICP along 3 successive	d patients with
Figure (14):	Follow up of left optic nerve slafter mannitol among studied increased ICP along 3 successive	patients with
Figure (15):	Follow up of brain edema a patients with increased ICP alo days	ng 3 successive
Figure (16):	ROC curve of Right ONSD be mannitol therapy as a pred edema	ictor of brain
Figure (17):	ROC curve of left ONSD be mannitol therapy as a pred edema	ictor of brain

Introduction

Elevated intracranial pressure (ICP) and cerebral edema are common neurologic complications of various cerebral disorders, such as traumatic brain injury (TBI), intracerebral haemorrhage (ICH) & subarachnoid haemorrhage (SAH) (Wang et al., 2020).

Early detection, evaluation and treatment of elevated ICP improve outcome of TBI. Invasive ICP monitoring is the gold standard method for ICP monitoring, but invasive techniques are associated with risk of complications such as hemorrhage and infection, also, it is not available in all places and requires high expertise (*Raboel et al.*, 2012).

Some non-invasive methods for measuring ICP can be used as alternatives to invasive techniques, including transcranial Doppler, optic nerve sheath diameter (ONSD), computed tomography (CT), magnetic resonance imaging (MRI), and fundoscopy (*Raboel et al., 2012*).

These non-invasive techniques do not carry the risk of complications as with invasive methods. Recently, adult studies have reported that measuring ONSD with non-invasive imaging technologies such as CT, MRI and ultrasound can be used as an alternative method to evaluate increased ICP (*Kimberly et al.*, 2008).

However, CT and MRI for ONSD measurements are time consuming, costly and usually require patient transportation.

Thus, ultrasound assessments of ONSD could be a better option because reliable, accessible, easy to learn, low cost and rapid bedside operation without the need for radiation exposure, especially for cases that are unstable and require real-time monitoring of ICP in an intensive care unit (Tayal et al., 2007).

The optic nerve sheath is continuous with the meninges of the central nervous system and is encased with the subarachnoid membrane. Cerebrospinal fluid (CSF), located in the subarachnoid space, accumulates in the optic nerve sheath thereby widening its diameter in the setting of increased ICP and limited intracranial compliance (Sekhon et al., 2014).

Osmotherapy is one treatment intervention in the care of patients with severe head injury resulting in cerebral edema and intracranial hypertension. The effect of hyperosmolar solutions on brain tissue was first studied nearly 90 years ago. Since that time, mannitol has become the most widely used hyperosmolar solution to treat elevated intracranial pressure (Knapp & James, 2005).

AIM OF THE WORK

To compare ultrasound assessment of optic nerve sheath diameter as a monitoring tool of adequacy of brain dehydration by osmotherapy in traumatic brain injury in comparison to the current standard of using brain CT.