

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

PATTERN OF LIVER INJURY IN COVID-19 PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree
In Internal Medicine

By

Wael Wadea Fahmey

M.B.B.CH

Internal Medicine Department,
Ain Shams University

Supervised by

Prof. Hossam Abedelaziz Mahmoud

Professor of Hepatology and Gastroenterology Faculty of Medicine - Ain Shams University

Prof. Maha Mohsen Mohamed Kamal

Professor of Hepatology and Gastroenterology Faculty of Medicine - Ain shams University

Dr. Mohamed Nabil Badawy Al Ashram

Lecture of Hepatology and Gastroenterology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2021

Acknowledgement

First of all, thanks GOD, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to *Prof. Hossam Abedelaziz Mahmoud, Professor of Hepatology and Gastroenterology, Faculty of Medicine, Ain Shams University* for his valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts he devoted in the supervision of this study.

I would like also, to express my great thanks to *Prof.*Maha Mohsen Mohamed Kamal, Professor of Hepatology

and Gastroenterology; Faculty of Medicine - Ain Shams

University. Her valuable advises and continuous support

facilitated completing this work.

I'll never forget how co-operative was Dr.

Mohamed Nabil Badawy Al Ashram, Lecture of Hepatology
and Gastroenterology, Faculty of Medicine, Ain Shams
University. He was encouraging all the time. It is honorable to
be supervised by his.

I would like to thank all the staff members of the Hepatology and Gastroenterology Department.

Finally, I would like to express my appreciation and gratitude to all **my family**, especially my caring and loving parents who enlighten my life.

Wael Wadea Fahmey

List of Contents

	Title Pa	ge
•	List of Abbreviations	I
•	List of Tables	III
•	List of Figures	V
•	Introduction	1
•	Aim of the Study	3
•	Review of Literature	
	- Chapter (1): Liver Injury	4
	- Chapter (2): COVID-19 Patients	31
	- Chapter (3): Pattern of Liver Injury in COVID-19 Patients	
•	Patients and Methods	71
•	Results	78
•	Discussion	106
•	Conclusion	117
•	Recommendations	118
•	Summary	119
•	References	124
•	Arabic Summary	

List of Abbreviations

List of Appleviations			
Abb.	Full term		
2019-nCoV	2019 New Corona Virus		
AAT	Alpha-1-Antitrypsin Deficiency		
AAT	a 1 -Antitrypsin		
ACE2	Angiotensin-Converting Enzyme 2		
ACLF	Acute-on-Chronic Liver Failure		
ALP	Alkaline Phosphatase		
ALT	Alanine Transaminase		
ALT	Alanine Aminotransferase		
ARDS	Acute Respiratory Distress Syndrome		
AST	Aspartate Aminotransferase		
CMV	Cytomegalovirus		
CoV	Corona Virus		
COVID-19	Corona Virus Disease 2019		
CRP	C-Reactive Protein		
CRS	Cytokine Release Syndrome		
CSF	Colony-Stimulating Factor		
CT	Computed Tomography		
CYP 3A4	Cytochrome P450		
DILI	Drug Induced Liver Injury		
DILI	Drug-Induced Liver Damage		
EUA	Emergency Use Authorization		
FNH	Focal Nodular Hyperplasia		
FXR	Farnesoid X Receptor		
GGT	Gamma Glutamyl Transferase		
GM	Granulocyte-Macrophage		
HS	Highly Significant		

List of Abbreviations (Continued)

Abb.	Full term
ICU	Intensive Care Unit
IP-10	Interferon-γ Inducible Protein 10
LAMP	Loop-Mediated Isothermal Amplification
LDH	Lactate Dehydrogenase
MCP-1	Monocyte Chemoattractant Protein 1
MERS	Middle East Respiratory Syndrome
MIP-1a	Macrophage Inflammatory Protein 1-a
NASH	Non-Alcoholic Steatohepatitis-Related Liver Fibrosis
NS	Non Significant
PBC	Primary Biliary Cirrhosis
PCR	Polymerase Chain Reaction
P-gp	P-glycoprotein
PSC	Primary Sclerosing Cholangitis
RAS	renin-angiotensin system
RR	Respiration Rate
rRT	Real-Time Reverse Transcription
RT	Reverse Transcription
S	Significant
SARS	Severe Acute Respiratory Syndrome
SARS-CoV-2	Severe Acute Respiratory Syndrome Corona Virus 2
TBIL	Total Bilirubin
TMA	Transcription-Mediated Amplification
TNF-a	Tumour Necrosis Factor-a
ULN	Upper Limit Unit of Normal
WHO	World Health Organization

List of Tables

Table No.	Title	Page
Review of L	iterature	
Table (1):	Minor nonspecific changes in libitopsies	
Results		
Table (1):	Comparison between moderate severe group regarding age, sex disease duration and hospital s	,
Table (2):	Comparison between studied gr regarding comorbidities	-
Table (3):	Comparison between moderate severe group regarding COVID-symptoms at admission	19
Table (4):	Comparison between studied gr regarding clinical examination (respiratory rate and oxygen saturation)	-
Table (5):	Comparison between studied gras regard CBC at admission	-
Table (6):	Comparison studied groups regarding CRP, ferritin and D-D	oimer 90
Table (7):	Comparison between studied gr regarding CT chest finding at admission	-
Table (8):	Incidence of elevated AST, ALT, bilirubin at admission	94

List of Tables (Continued)

Table No.	Title	Page
Table (9):	Correlation between dyspnea and AST, ALT, bilirubin at time of admission	
Table (10):	Correlation between AST, ALT, bilirubin and respiratory rate and oxygen saturation	
Table (11):	Correlation between AST, ALT, bilirubin and laboratory finding regard TLC, ferritin and D-dimer	98
Table (12):	Comparison between studied gro regarding AST, on admission, du hospital stay and discharge and dynamic changes of it along cour of disease	ring rse
Table (13):	Comparison between studied gro regarding ALT, on admission, du hospital stay and discharge and dynamic changes of it along cour of disease	ring rse
Table (14):	Comparison between studied gro regarding bilirubin, on admission during hospital stay and dischar and dynamic changes of it along course of disease	ı, ge

List of Figures

Figure No.	Title	Page
Review of Li	terature	
Fig. (1): Fig. (2):	Acute hepatocyte injury Evaluation of hepatic inflammation	
Fig. (3):	Three forms of necrosis. (a) Centrilobular, (b) Midzonal and (c) Periportal	
Fig. (4):	Multiple organ injuries in SARS- CoV-2 infection	40
Fig. (5):	COVID-19 can cause direct liver damage, either through ACE-2 entry or indirect through generalized inflammation caused by the cytokine cascade)
Results		
Fig. (1):	Comparison between the studied groups as regard age (P >0.189)	80
Fig. (2):	Comparison between the studied groups as regard sex (P = 0.001)	80
Fig. (3):	Comparison between studied groups as regard disease duration (P < 0.001	
Fig. (4):	Comparison between studied group as regard hospital stay (P < 0.001)	81
Fig. (5):	Comparison between studied groups as regard co-morbidities	
Fig. (6):	Comparison between studied groups regarding COVID symptoms at admission	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (7):	Comparison between studied groups regard RR at admission	
Fig. (8):	Comparison between studied groups oxygen saturation at admission	
Fig. (9):	Comparison between studied groups regard TLC at admission	
Fig. (10):	Comparison between studied groups as regard ferritin at admission	
Fig. (11):	Comparison between studied groups as regard D-dimer at admission	
Fig. (12):	Comparison between studied groups regarding CT finding at admission	
Fig. (13):	Incidence of elevated AST, ALT, Bilirubin in total patient through admission	94
Fig. (14):	Correlation between AST and respiratory rate at admission	96
Fig. (15):	Correlation between ALT and respiratory rate at admission	96
Fig. (16):	Correlation between bilirubin and respiratory rate at admission	97
Fig. (17):	Correlation between ALT and ferriting level at admission	
Fig. (18):	Correlation between AST and ferriting level at admission	

List of Figures (Continued)

Figure No.	Title Pag	е
Fig. (19):	Comparison between studied groups regard AST along course of the disease)1
Fig. (20):	Comparison between studied group regard median of AST along course of disease)1
Fig. (21):	Comparison between studied groups regarding ALT along course of disease)3
Fig. (22):	Comparison of studied groups regarding median of ALT along course of disease)3
Fig. (23):	Comparison between studied groups regarding bilirubin along course of disease)5
Fig. (24):	Comparison between studied groups regarding median of BILIRUBIN along course of disease)5

INTRODUCTION

Corona viruses are a family of viruses that are known to cause both respiratory and intestinal diseases in Various animal species and humans (*Dong et al., 2019*). These viruses tend to target the upper respiratory tract, causing Anywhere from moderate to severe illnesses, such as the cold or in more extreme cases, pneumonia. To date, 7 human corona viruses have been identified, including the 3 epidemic viruses of severe acute respiratory syndrome (SARS)-CoV, middle east respiratory syndrome (MERS)-CoV and the newest, severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) (*Niu et al., 2016*).

In December of 2019, a series of pneumonia cases of unknown origin began to spread in the central city of Wuhan, China. Now identified as SARS-CoV-2, the virus had gone on to infect more than 300,000 people Worldwide by March 2020 (*Jia et al.*, 2019).

The corona virus disease (COVID-19) has been labelled a pandemic by the World Health Organization (WHO) having led to thousands of deaths and hospitalizations worldwide.

While most COVID-19 cases have been identified as mild, more extreme diagnoses have led to respiratory failure, septic shock, and/or multiple organ dysfunction (*Wu and McGoogan*, 2020).