سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Electrical Properties of Indium Phosphide Single Crystal Devices

Thesis

Submitted to the Faculty of Science Alexandria University

The Degree of Doctor of Philosophy of Science in Physics

ByEman Mohamed Ahmed El-Shafey

B. Sc. in Physics (1986) M. Sc. in Physics (1992)

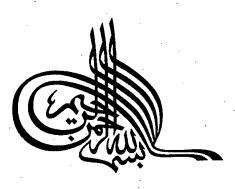
Supervised By

Prof. Dr. A. A. Bishara

Head of Physics Department Prof. of Nuclear Physics **Faculty of Science** Alexandria University

Prof. Dr. T. G. Abdel-Malik

Head of Physics Department Prof. of Solid State Physics Faculty of Science Menia University

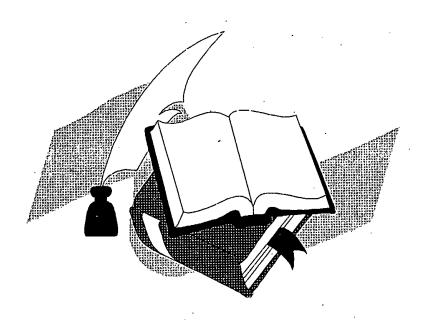

Prof. Dr. A. E. El-Samahy

Prof. of Solid State Physics Faculty of Science Alexandria University

1998

10V0E

TUS



(وقل ربزدنی علماً)

M

TO MY FAMILY

CONTENTS

ADSTRACT	•	
CHAPTER I	INTRODUCTION	
1.1 An Introduction to III-V Semiconductors.		
1.2 The Scope of The Present Investigation.		
1.3 The Format of The Thesis.		
CHAPTER II	INDIUM PHOSPHIDE CRYSTALS AND	•
	RELATED COMPOUNDS	
2.1 Transition M	letal Impurities in III-V Compounds	5
2.2 Interststitial and Substitional Zn in InP Compounds.		
2.3 Defect States in InP Crystals		
2.4 Review of Electrical Measurements on InP Crystals.		
CHAPTER III	THEORETICAL CONSIDERATIONS	
3.1 The Metal Semiconductor Contact		
3.2 Ohmic and Space-Charge-Limited Conduction		
3.2.1 Therma	l Activated Ohmic and	
Space -	-Charge-Limited Conduction	
I The	e Extrinsic Case	32
II The	e Nonextrinsic Case	34
3.3 Exponen	tial Distribution of Traps	35
3.4 Current-	Transport Mechanisms	35
(Thermo	nionic-Emission Theory)	
3.5 Reverse (Characteristics	41

. .

3.6	Schottky Barrier Capacitance		44		
3.7	Alternating	46			
CHA	PTER IV	DESCRIPTION OF EXPERIMENT	Γ AL		
-		TECHNIQUES			
4.1	Liquid Enc	apsulation Czochralski(LEC)	51		
4.2	Thermal Annealing		51		
4.3	Rapid Thermal Annealing (RTA)		53		
4.4	Face to Face Annealing		56		
4.5	Sample preparation		56		
4.6	The Sample Holder and Heater 57		57		
4.7	Current-Voltage Measurements 59		59		
	I Inter	ference from external fields	59		
	II Leak	cage Current	60		
	III The	Effect of Microphone	60		
4.8	Capacitano	ee-Voltage measurements	61		
4.9	Alternating Current Measurements 61		61		
		ELECTRICAL Transport PROPE	RTIES IN		
		InP:Zn CRYSTALS			
5.1	Current-Vo	oltage Characteristics	62		
5.2	Temperatu	re-Dependence of Ohmic and			
	Space-Cha	arge-Limited Conduction	66		
	Temperature Dependence of the Schottky Barrier Capacitance in				
	Al/InP:Zn/	'Au Samples	71		
5.4	Discussion	n of Results	73		

CHAPTER VI ALTERNATING CURRENT MEASUR	REMENTS
---------------------------------------	---------

. 41

6.1	Variation of AC Conductivity with Frequency and	
	Temperature for Al/InP:Zn/Al Samples	78
6.2	Variation of Capacitance and Loss Tangent with Frequency	
	and Temperature for Al/InP:Zn/Al Devices	79
6.3	Variation of Capacitance with Temperature and Frequency	
	for Al/InP:Zn/Au Devices	81
6.4	Variation of Parallel Equivalent Conductance with	
	Frequency and Temperature	83
6.5	Variation of Quality Factor Q with Frequency	
	and Temperature	85
6.6	Discussion of Results	88

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and deepest gratitude to *Prof. Dr. A. A. Bishara* for his kind supervision, stimulating discussions and assistance throughout this work.

I wish to express my gratitude and deepest thanks to *Prof. Dr. T. G.*Abdel-Malik, who suggested this point, for supervision and assistance throughout the various stages of progress of this work.

I would like to express my sincere appreciation and deepest thanks to *Prof. Dr. A. E. El-Samahy* for guidance, assistance throughout this work and help in the final stage of this thesis.

I wish to express my gratitude to *Prof. Dr. Salah. D. M. Darwish* Department of physics, Minia University for supplying and performing the speciments used throughout this work. My thanks are also due to the staff members of physics Department, Faculty of Scince, Alexandria University and Minia University

ABSTRACT

ABSTRACT

The electrical properties of zinc-doped indium phosphide single crystals which have been pulled from the melt by the liquid encapsulation Czochralski technique have been studied using aluminum and gold electrode combinations. Samples with aluminum electrodes showed ohmic conduction in the lower voltage range and two separate regions of space-charge-limited (SCL) conductivity at higher voltage levels controlled by a discrete trapping level and by an exponential distribution of traps above the valence band edge, respectively. Measurements of current density-temperature characteristics in the SCLC regions yielded voltage variable slopes on plots of the logarithm of current density as a function of the inverse temperature in accordance with the theory for exponential distribution of traps. On the other hand, constant slope was obtained for a single dominant level which immediately yielded its depth above the valence band edge. A number of parameters were evaluated on the basis of the theory of space-charge-limited conduction and the following values were obtained: excess acceptor concentration $(N_a - N_d) = 1.7 \times 10^{18} \text{ m}^{-3}$, discrete trap level $E_t = 0.20 \text{ eV}$ above the valence band edge with a state density $N_{t(s)} = 2.2 \times 10^{20} \text{ m}^{-3}$, hole mobility $\mu = 7 \times 10^{-3} \text{ m}^{-2} \text{V}^{-1} \text{s}^{-1}$, room temperature hole

concentration P=5.1x10¹⁵ m⁻³, concentration of traps per unit energy range at the valence band edge $P_o = 1.7 \times 10^{38} \text{ J}^{-1} \text{m}^{-3}$, temperature parameter T_i of trapping distribution 750 K and total trapping concentration $N_{t(e)} = 2.2 \times 10^{20} \text{ m}^{-3}$. Samples having one electrode of each metal showed different behaviour. At low voltages V ≤ 60 mV, under forward bias (aluminum electrode positive), Schottky diode behaviour was observed. At applied voltage greater than 60 mV, the forward characteristics showed a similar overall trend to that of Al/InP:Zn/Al samples i.e ohmic conduction followed by two separate regions of space-charge-limited conductivity controlled respectively by a single dominant level and by an exponential trap distribution. Under reverse bias (aluminum electrode negative), the conduction processes could be interpreted in terms of both the Pool-Frenkel (field-assisted thermal detrapping of carriers) and Schottky effects (field lowering of the interfacial at the injected electrode interface). Barrier height and width were determined as a function of applied voltage. The results showed that with the increase of voltage, the barrier width increased appreciably but the barrier height retained almost the same value. The Schottky barrier capacitance of Al/InP:Zn/Au samples was measured as a function of voltage at several temperatures. The barrier heights measured by capacitance method and those determined from conductivity measurements were in good agreement.

. .