

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Rapid Automatized Naming Assessment in Egyptian Children with Attentiondeficit/Hyperactivity disorder

Thesis
Submitted for the Partial Fulfilment of
doctorate degree in Phoniatrics

By Doaa Abd El-Hakim Gomaa

M.B., B.Ch.
Assistant lecturer of Phoniatrics,
Faculty of Medicine, Ain Shams University

Supervised by **Prof. Dr / Samia El-Sayed Bassiouny**

Professor of Phoniatrics
Faculty of Medicine - Ain Shams University

Prof. Dr/ Hassan Hosny Ghandour

Professor of Phoniatrics Faculty of Medicine - Ain Shams University

Dr/ Yomna Hassan Elfiky

Lecturer of Phoniatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021

List of Content

Page	? <i>No</i> .		
List of Abbreviations	i		
List of Figures	iii		
List of Tables	iv		
Introduction	1		
Aim of the Work	4		
Review of Literature:			
➤ Chapter 1: Attention Deficit Hyperactivity Disorder: Neurodevelopmental Disorder	5		
➤ Chapter 2: Working Memory: Core Deficit in ADHD	19		
➤ Chapter 3: Rapid Automatized Naming	26		
Chapter 4: Rapid Automatized Naming Assessment	30		
➤ Chapter 5: Rapid Automatized Naming Deficit in ADHD	35		
Subjects and Methods	38		
Results	42		
Discussion	51		
Summary	57		
Conclusion and Recommendation	60		
References			
Appendix			
Arabic Summary	—		

Acknowledgements

First and foremost, thanks to ALLAH, most merciful and greatest beneficent who taught man what he did not know and enable me to overcome all problems, which faced me through this work.

My deep thanks and sincere appreciation to **Professor Dr. Samia Bassiouny**, Professor of Phoniatrics, Faculty of Medicine, Ain Shams University, for her continuous encouragement, valuable assistance, inspiring advice and guidance to finish this work.

My great appreciation goes to **Professor Dr. Hassan Hosny Ghandour**, Professor of Phoniatrics, Faculty of
Medicine, Ain Shams University, for his kind direction and
valuable support throughout the accomplishment of this work.

I extend my thanks to **Dr. Yomna Hassan Elfiky**, lecturer of Phoniatrics, Faculty of Medicine, Ain Shams University for her kind support, her continuous guidance and help.

Endless thanks for my friends and colleagues in unit of phoniatrics Ain Shams university for their love and support, without them, I could have never completed this work.

To my family...my mother, my brothers and my husband.

To my lovely children Judi and Omar.

To the soul of my father.

Doaa Abd El-Hakim Gomaa

List of Abbreviations

ADHD : Attention-deficit/hyperactivity disorder.

ADHD-C: Attention-deficit/hyperactivity disorder predominantly

combined type.

ADHD-I : Attention-deficit/hyperactivity disorder predominantly

inattentive type.

ADHD-H : Attention-deficit/hyperactivity disorder predominantly

hyperactive-impulsive type.

ANT : Attention network task

CE : Central executive.

COMT : Catechol-O-methyltransferase.

CTOPP : The rapid naming subtests of the Comprehensive Test

of Phonological Processing.

DSM-IV : Diagnostic and Statistical Manual of Mental

Disorders, Forth Edition

DSM-V : Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition.

ENT : Otorhinolaryngology

IQ : Intelligence quotient.

MADST : Modified Arabic Dyslexic screening test

MAO-A: Monoamine oxidase-A.

ODD : Oppositional defiant disorder.

PFC: Prefrontal cortex.

PH : Phonology.

RAN : Rapid automatizing naming.

RAN-RAS : The Rapid Automatized Naming-Rapid Alternating

Stimulus Tests.

RD : Reading disability.

SPSS : Statistical Package for Social Science

TD : Totally developed.

VS : Visuospatial.

WM : Working memory.

YAs : Young adults.

List of Figures

Fig	Title	Page
1	The model of working memory proposed in 1974	22
2	A later development of the multicomponent model. It includes links to long-term memory and a fourth component, the episodic buffer that is accessible to conscious awareness.	22
3	A more detailed formulation of the phonological loop model based on both behavioral and neuropsychological evidence	24
4	Cowan's model, which treats working memory as the temporary activation of areas of long-term memory	25
5	Rapid automatized naming (RAN) letters stimulus card	33
6	Pie chart showing the demographic data of cases	43
7	Pie chart showing the ADHD subtype of cases	44
8	Pie chart showing the ADHD severity of cases	45
9	Pie chart showing IQ assessment of cases	46
10	Simple histogram showing Duration and Accuracy affection of RAN	48
11	Simple histogram showing Duration affection of different ADHD subtypes.	50
12	Simple histogram showing accuracy affection of different ADHD subtypes	50

List of Tables

Table	Title	Page
1	Mean age among studied group	42
2	Demographic data for cases	42
3	ADHD subtypes for cases	44
4	ADHD severity for cases	45
5	IQ assessment for cases	46
6	RAN duration	47
7	RAN accuracy	48
8	Duration and accuracy of RAN IN different ADHD subtypes	49

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common mental disorders affecting children. As well as many adults. Symptoms of ADHD include inattention (not being able to keep focus), hyperactivity (excess movement that is not fitting to the setting) and impulsivity (hasty acts that occur in the moment without thought). An estimated 8.4 percent of children and 2.5 percent of adults have ADHD (*Danielson et al.*, 2018).

Criteria for ADHD has two dimensions of inattention and hyperactivity-impulsivity symptoms that are used to define three nominal subtypes: predominantly hyperactive-impulsive type (ADHD-H), predominantly inattentive type (ADHD-I), and combined type (ADHD-C) (Ayano et al., 2020).

Rapid automatizing naming (RAN) is the ability to identify and recognize a given item through the activation and concomitant articulation of its name, which will later be stored in the mental lexicon (Cohen et al., 2018).

RAN tasks depend on automaticity within and among each individual component in the naming circuit. It is within this context RAN is being considered to be a universal processes that predict the young child's ability to connect and

automatize the sequences of letters and words with their linguistic information. Regarding speed and accuracy, the response could be "rapid and accurate", "rapid inaccurate", "slow and accurate" or "slow and inaccurate" (Gordon et al., 2020).

RAN task requires a synchronization and integration across a wide range of processes (I) Attentional processes to the stimulus, (II) Bihemispheric visual processes responsible for initial feature detection, visual discrimination, and pattern identification, (III) Connection of visual features and pattern information with already the stored orthographic representations, (IV) Integration of visual and orthographic information with stored phonological representations, (V) and retrieval of phonological labels, (VI) Activation and integration of semantic and conceptual information with all other input and (VII) Motoric activation leading to articulation (De Chambrier et al., 2021).

The association between ADHD symptoms and slow cognitive speed remains significant even when measures of other replicated deficits such as response inhibition, response variability, word retrieval and working memory (Ryan et al., 2017).

Although slow cognitive speed does not appear to be necessary or sufficient to cause ADHD. It is an important part of a comprehensive neuropsychological model of ADHD (*Creque and Willcutt, 2021*).

AIM OF THE WORK

The present study aims to assess the rapid automatized naming deficits (in speed and accuracy) in cases of ADHD to investigate other cognitive deficits related to ADHD to be incorporated in management plan if proved.

ATTENTION DEFICIT HYPERACTIVITY DISORDER: NEURODEVELOPMENTAL DISORDER

Attention deficit hyperactivity disorder (ADHD) is the most common behavioral condition and the second most common chronic illness in children. National survey data from 2016 revealed that 9.4% of US children received an ADHD diagnosis at some point and that 8.4% currently had ADHD (*Danielson et al.*, 2018).

ADHD is characterized by problems paying attention, excessive activity, or difficulty controlling behavior which is not appropriate for a person's age. The symptoms appear before a person is twelve years old, are present for more than six months, and cause problems in at least two settings (such as school, home, or recreational activities) (Muscari and Ngo, 2017).

Children and adolescents with ADHD are more likely to experience a variety of negative outcomes compared to their peers without the disorder, including lower academic attainment, impaired social functioning, increased risk of hospital admissions and injuries, increased substance use and risk of substance use disorder, and reduced income and participation in labor markets as adults (*Fleming et al.*, 2017).