

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effects of Direct Acting Antivirals on Glomerular Filtration Rates and Neutrophil Gelatinase-Associated Lipocalin during the Treatment of Hepatitis C Patients

Thesis

Submitted for Partial Fulfillment of M.D Degree in Internal Medicine

By

Michael George Sami Nada M.B.B.Ch, M.SC Under Supervision of

Prof. Dr. / Ehab Hassan Nashaat

Professor of Internal Medicine & Gastroenterology Faculty of Medicine, Ain Shams University

Dr. / Mohamed Lotfy Soliman

Assistant Professor of Internal Medicine & Gastroenterology Faculty of Medicine, Ain Shams University

Dr. / Ahmed Ibraheem Mohammed El Shafie

Assistant Professor of Internal Medicine & Gastroenterology
Faculty of Medicine, Ain Shams University

Dr. / Ghada Abdelrahman Ahmed

Lecturer of Internal Medicine & Gastroenterology Faculty of Medicine, Ain Shams University

Dr. / Walaa Mohamed Hashem

Lecturer of Internal Medicine & Gastroenterology Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2021

Acknowledgments

First and foremost, I feel always indebted to Allah the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. / Ehab Hassan Nashaat, Professor of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. / Mohamed Lotfy Soliman, Assistant Professor of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to Dr. / Ahmed Ibraheem Mohammed El Shafie, Assistant Professor of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

Really I can hardly find the words to express my gratitude to Dr. / Ghada Abdelrahman Ahmed, Lecturer of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work.

Really I can hardly find the words to express my gratitude to Dr. / Walaa Mohamed Hashem, Lecturer of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for her tremendous effort she has done in the meticulous revision of the whole work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Michael George Sami Nada

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
■ Hepatitis C and the Kidney	5
 NGAL-Neutrophil Gelatinase Associated Lipocal 	in23
Patients and Methods	39
Results	47
Discussion	63
Summary	70
Conclusion	72
Recommendations	73
References	74
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table 1:	List of Kernel and Outlier Lipocalin	
Table 2:	Comparison between both groups as regard gender.	
Table 3:	Comparison between both groups as regard age.	
Table 4:	Comparison between both groups as regard NGAL at baseline.	
Table 5:	Demographic, clinical, and sonographic criteria of Group I and Group II of cases	
Table 6:	Comparison between Group I and Group II as regard PCR, CBC, liver profile, serum creatinine, alpha-fetoprotein, coagulation profile, FIB4 and APRI scores.	
Table 7:	Showing creatinine at baseline and at the End of treatment (EOT) in both groups with no significant change	
Table 8:	Estimated glomerular filtration rate (eGFR) at baseline and at the End of Treatment (EOT) in Group I and Group II of cases	
Table 9:	eGFR at baseline and EOT among patients ranked according to KDIGO-CKD classification	
Table 10:	Serum NGAL at baseline and EOT in Group I and Group II of cases	
Table 11:	Serum NGAL at baseline and EOT among patients in group II ranked according to KDIGO-CKD classification	
Table 12:	Correlation between serum NGAL levels and eGFR at baseline and EOT in Group II	
	L1	

List of Tables cont...

Table No.	Title	Page No.
Table 13:	Correlation between serum NGA	
Table 14:	baseline and baseline la parameters in Group I of cases Correlation between serum NGA	58
Table 14.	baseline and baseline la parameters in Group II of cases	aboratory
Table 15:	Diagnostic performance of N detecting patients with KDl stage>2	IGAL in IGO-CKD

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Classification of cryoglobulinaemia immune typing	
Figure 2:	Mechanisms of HCV-related cryoglob	oulinaemia
Figure 3:	Viral particle showing sites in pathogenesis	
Figure 4:	Pathophysiology of Hepatorenal synd	
Figure 5:	Mechanism of Action of DAAs	
Figure 6:	Generic and Trade names for HCV DA	
Figure 7:	Schematic representation of the lipoca	alin fold 25
Figure 8:	Pathway of NGAL production is	
J	leukocyte and kidney tubule	27
Figure 9:	NGAL trafficking along the nephron i	
Figure 10:	Summary of expressional regula	
	biological activities of NGAL	
Figure 11:	Role of NGAL in hematopoietic malig	nancies 35
Figure 12:	Involvement of NGAL in a proinfl	ammatory
	amplification loop	37
Figure 13:	Estimated glomerular filtration rate	
	baseline and End of Treatment (EOT) in Group
	I and Group II of cases	
Figure 14:	eGFR at baseline and EOT among	_
	ranked according to KDIGO-CKD class	
Figure 15:	Serum NGAL at baseline and EOT i	-
	and Group II of cases	
Figure 16:	Serum NGAL at baseline and EC	
	patients ranked according to KI	
T'	classification	
Figure 17:	Scatter-plot showing a significant	
	correlation between Serum NGAL	
	eGFR at baseline	57

List of Figures cont...

Fig. No.	Title	Page No.
Figure 18:	Scatter-plot showing a significan correlation between serum NGAL ar	_
Figure 19:	Scatter-plot showing significant correlation between serum NGAL le	t positive vel and age
Figure 20:	at baseline in Group I of cases Scatter-plot showing significant correlation between serum NGAL AST at baseline in Group II of cases	negative level and
Figure 21:	Scatter-plot showing significant correlation between serum NGAL	negative level and
Figure 22:	BMI at baseline in Group II of cases ROC curve for diagnostic performance in detecting patient with KDIO-CKD	ce of NGAL

List of Abbreviations

Abb.	Full term
ADDED	Autocomal dominant nalversatio kidner
ADF KD	Autosomal dominant polycystic kidney disease
AIN	Acute interstitial nephritis
	Acute kidney injury
	Serum alanine aminotransferase
	Serum aspartate aminotransferase
	Acute tubular necrosis
	Chronic kidney disease
	Direct-acting antivirals
DAC	
	Enzyme linked immunosorbent assay
	Food and Drug Administration
Fe	Iron
FGN	Fibrillary glomerulonephritis
FSGS	Focal segmental glomerulosclerosis
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HIV	Human immunodeficiency virus
	Hepatorenal Syndrome
IFN	
_	Immunoglobulins
_	Immunoglobulin A
	Immunoglobulin G
	Interquartile range
	Insulin receptor substrate proteins
	Immunotactoid glomerulonephritis
	Lipoprotein receptor-related protein 2
	Mitogen activated protein kinase
	Myocardial infarction
	Matrix metalloproteinase 9
	Membranous glomerulonephritis
	Membranoproliferative glomerulonephritis
MSF1	Migration stimulating factor inhibitor

List of Abbreviations cont...

Abb.	Full term
NCAL	NI
	Neutrophil gelatinase associated lipocalin
	Non-nucleoside polymerase inhibitors
	Nucleoside polymerase inhibitors
	Nonstructural proteins
	Polyarteritis Nodusa
	Pegylated interferon
	Protease inhibitors
	Retinol binding protein
RBV	Ribavirin
RF	Rheumatoid factor
ROC Curve	Receiver Operating Characteristic Curve
SCR	Structurally conserved regions
SD	Standard deviation
SOF	Sofosbuvir
SPSS	Statistical package for Social Science
SR-B1	Scavenger receptor B1
SVR	Sustained viral response
TAPA-1	Target of anitproliferative antibody 1
TGFβ	Transforming Growth factor Beta
TLR	Toll-like receptors
TLR-2	——————————————————————————————————————
TLR-3	
	Tumor Necrosis Factor alpha
	Vascular endothelial growth factor
	World Health Organization
	U

Introduction

Hepatitis C virus (HCV) infection is a major global health challenge, according to the World Health Organization (WHO) report in 2017, it is estimated that about 71 million people are chronically infected worldwide (World Health Organization, 2017).

Unfortunately, Egypt has one of the highest global burdens of hepatitis C virus (predominantly genotype 4) infections, it is estimated that prevalence of HCV is around 4.5% to 6.7% (*Doss et al.*, 2018).

The ultimate goal of hepatitis C treatment is to reduce the occurrence of end-stage liver disease and its complications, including decompensated cirrhosis, liver transplantation, and Hepatocellular carcinoma (HCC). Initially, chronic hepatitis C was treated by conventional interferon (IFN) monotherapy which yielded very poor response rates. Addition of the guanosine analogue, ribavirin (RBV) to conventional IFN was associated with a slight improvement in sustained viral response (SVR) (*Suda and Sakamoto*, 2015).

The year 2011 marked the dawn of the new era of direct-acting antivirals (DAAs) for hepatitis C. DAAs were initially introduced as add-ons to the previous standard of care consisting of PEG-IFNα/RBV. In 2014, a breakthrough in HCV therapy was achieved with the introduction of IFN-free -oral

1

DAAs, with SVR rates in excess of 90% after 12 weeks of therapy (*Kamal*, 2018).

Concerns on renal safety may represent a limitation to a wide use of DAAs in HCV patients, despite the proven efficacy of this class of drugs. Furthermore, the reported unreliability of conventional markers of renal function in patients with liver cirrhosis can contribute to discourage DAA prescription (Levin et al., 2013).

HCV infection is prevalent in patients with renal impairment, diverse groups of patients with renal disease require consideration when treatment of hepatitis C is indicated. These include patients with chronic kidney disease (CKD) stage 4 (eGFR = 15-29 ml/min/1.73 m2) or those with CKD stage 5 (eGFR <15 ml/min/1.73 m2). Some of these groups, renal function could potentially improve with antiviral treatment. However, organ recovery may be delayed or worsened in others (European Association for the Study of the Liver, 2018).

In patients with severe renal dysfunction (eGFR <30 ml/min/1.73 m2), the safety of sofosbuvir-based regimens has been questioned. A recommended regimen in HCV genotype 4 is the combination of ritonavir-boosted paritaprevir and ombitasvir for 12 weeks with daily ribavirin (200 mg/day) if the haemoglobin level is >10 g/dl at (Baseline), or safer with

combination of grazoprevir and elbasvir for 12 weeks (European Association for the Study of the Liver, 2018).

Neutrophil gelatinase associated lipocalin (NGAL) is a novel kidney biomarker. It is a small glycoprotein secreted by epithelial cells (liver, kidney, lungs) and some white blood cells (neutrophils, monocytes and macrophages). It's filtered in the glomerulus and reabsorbed by the proximal tubules. It can be measured in blood and urine and so it is used as early marker of acute kidney injury (Strazzulla et al., 2018).