

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Assessment of Nutritional Status and Glycemic Control in Patients with Hepatic Glycogenosis

Thesis

For Partial Fulfillment of Master Degree in **Pediatrics**

By

Eman Nazeeh Ahmed

M.B.B.Ch (2012)

Under Supervision of

Prof. Dr. Tawhida Yassin Abd-Elghaffar

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Yasmin Gamal Abdou Elgendy

Assistant Professor of Pediatrics Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I would like to express my hearty thanks to my mother for her support till this work was completed.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tawhida Yassin**Abd-Elghafar, Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Yasmin Gamal**Abdou Elgendy, Assistant professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Eman Nazeeh Ahmed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	
Aim of the Work	4
Review of Literature	
GSD type I	5
GSD type III	15
GSD Type VI	19
GSD type IX	23
Nutritional Management of GSD	26
Dietary Components in GSD	35
Patients and Methods	41
Results	50
Discussion	78
Summary	88
Conclusion	90
Recommendations	91
References	92
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1): Table (2):	Hepatic glycogen storage disorders The demographic data of the studied cases	
Table (3):	Comparison of demographic data between typ type III GSD	e I and
Table (4):	Comparison of baseline Anthropo Measurements between type I and type III GS	
Table (5):	Comparison between clinical features of typ III GSD	
Table (6):	Comparing various Laboratory measur between types I and type III GSD	
Table (7):	Comparison between both types of GSD as a food analysis after nutritional plan	
Table (8):	Comparison between types I & III GSD as a the amount of protein and cornstarch in di intervention	et post
Table (9):	Protein amount in diet before and after intervention	•
Table (10):	Serum cholesterol level in type I and type II before and after dietary intervention	
Table (11):	Serum Triglycerides level in type I and type II	II GSD 70
Table (12):	Comparison between Serum Uric Ac Hemoglobin levels at the start of the study ar 6 months of dietetic control	nd after
Table (13):	Waist hip ratio and mid upper arm circumference the studied subjects pre and post dietary interv	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Sex distribution of the studied groups	51
Figure (2):	Consanguinity of the parents of cases	
Figure (3):	Residency distribution of the studied cases.	
Figure (4):	Order of birth of the studied cases	
Figure (5):	Comparison between type I and type III the gender	egarding
Figure (6):	Age distribution for GSD I, III boxplot	54
Figure (7):	Comparison between type I and type regarding the age of diagnosis (boxplot)	
Figure (8):	Difference between type I and type III regards the weight Z score	
Figure (9):	Difference between type I and type according to mid upper arm circumference.	
Figure (10):	Clinical features difference between types GSD.	
Figure (11):	Comparison between type I and type regarding to serum glucose level	
Figure (12):	Comparison between type I and type regarding to serum uric acid.	
Figure (13):	Serum uric acid was more significantly h type I than in type III	-
Figure (14):	Serum lactate level in types I and III GSD	
Figure (15):	Difference between type I and III GSD a	_
Figure (16):	Difference between type I and III GSD a	•
Figure (17):	Difference between type I and type according to the amount of cornstarch	III GSD

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (18):	Comparison between mean value of cholesterol level in types I and III GSD pre a dietary intervention	and post
Figure (19):	Comparison between serum triglycerides types I and III GSD pre and post intervention	dietary
Figure (20):	Weight percentiles of cases before interventype I GSD cases	
Figure (21):	Weight percentiles of cases after intervertype I GSD regarding to weight	
Figure (22):	Weight percentiles of cases before interventype III GSD.	
Figure (23):	Weight percentiles of cases after intervertype III GSD	
Figure (24):	Height percentiles of cases before an intervention in type I GSD	
Figure (25):		in type

List of Abbreviations

Abb.	Full term
\overline{AGL}	Amylo-alpha-1,6- glucosivase, 4-alpha-
	glucanocratransferase
<i>ALP</i>	Alkaline phosphatase
ALT	Alanine aminotransferase
<i>AST</i>	Aspartate transaminase
<i>ATP</i>	Adenosine tri phosphate
<i>BG</i>	Blood glucose
<i>BMI</i>	Body mass index
<i>BMIZ</i>	Body mass index z score
<i>CBC</i>	Complete blood count
CHO	Carbohydrates
CNGDF	Continuous nasogastric day feeding
<i>EEG</i>	$Electroence phalogram$
<i>GH</i>	Growth hormone
<i>GI</i>	$Gastrointestinal$
GSD	Glycogen storage disease
<i>HAZ</i>	Height for age z score
HCC	$He pato cellular\ carcinoma$
<i>IBD</i>	Inflammatory bowel disease
<i>IQ</i>	Intelligence Quotient
<i>LDH</i>	Lactate dehydrogenase
MRI	Magnetic Resonance Imaging
<i>MUAC</i>	Mid upper arm circumference
<i>OGF</i>	Over-nights gastric feedings
<i>RCS</i>	Raw Cornstarch
<i>TG</i>	Triglycerides

List of Abbreviations (cont...)

Introduction

lycogen is most abundant in the liver and muscle. The main role of glycogen in the liver is to maintain glucose homeostasis. The liver stores glucose for release to tissues that are unable to synthesize significant amounts during fasting (Oldfors et al., 2014; Chen, 2001).

Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism (Roach, 2002).

In postprandial period, blood glucose level increases and endogenous glucose production is suppressed. Exogenous glucose is either metabolized to pyruvate or stored as glycogen in the liver and skeletal muscles (Saltik et al., 2000). Under aerobic conditions, pyruvate is converted to acetyl coenzyme A (acetyl-Co A), which enters the citric acid cycle, the products of which are water, carbon dioxide and adenosine tri phosphate (ATP) or used for the synthesis of fatty acids. In contrast under anaerobic conditions, pyruvate is converted to lactate which is an important alternative fuel during episodes of hypoglycemia. Different hormones including insulin, glucagon, cortisol and others regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis (Roach, 2002).

There are a number of inborn errors of glucose and glycogen metabolism (dextrinosis and glycogenosis) that result from mutations in genes for virtually all of the proteins

involved in glycogen synthesis, degradation, or regulation. Those disorders that result in abnormal storage of glycogen are known as glycogen storage diseases (GSDs). They are largely categorized by number according to the chronology of recognition of the responsible enzyme defect (Table 1). The age of onset varies from in utero to adulthood (Chen, 2001).

Table (1): Hepatic glycogen storage disorders

Type	Eponym	Enzyme deficiency	Gene	Gene locus	Affected tissue
0			GYS2	12p12.2	Liver
Ia	Von Gierke		G6PC	17q21	Liver, bowel, kidney
Ib		Hepatic glycogen synthase	SLC37A4	11q23	Liver, bowel, kidney, marrow
Ш	Cori/Forbe	Glucose-6- phosphatase	AGL	1p21	Liver (muscle, heart)
IV	Andersen	Glycogen branching enzyme	GBE1	3p12	Liver (generalised)
VI	Hers	Hepatic phosphorylase	PYGL	14q21-q22	Liver
			PHKA1	Xq13.1-q21	Muscle
		Dhambardasa kinasa	PHKA2	Xp22.2-p22	Liver
IX			РНКВ	16q12-q13	Generalised
IX	Phosphorylase kinase	PHKG1	7p12-q21	Muscle	
		PHKG2	16p12.1-p11.2	Liver & testis	
			PHKD	Various	Generalised
X1	Fanconi- Bickel	GLUT 2 transporter	SLC2A2	3q26.1-q26.3	Liver, kidney

Abbreviations: GYS2, Glycogen synthase 2; G6PC, Glucose-6-phosphatase catalytic subunit; SLC37A4, Solute carrier family 37 member 4; AGL, Amylo-alpha-1,6glucosidase,4-alpha-glucanotransferase; GBE1, 1,4-alpha- glucan branching enzyme 1; PYGL, Glycogen phosphorylase L; PHKA1, Phosphorylase kinase regulatory subunit alpha 1; PHKA2, Phosphorylase kinase regulatory subunit alpha 2; PHKB, Phosphorylase kinase regulatory subunit beta; PHKG2,, Phosphorylase kinase catalytic subunit gamma 2; GLUT 2, Solute carrier family 2 member 2.

Adapted from Wolfsdorf and Weinstein 2003, Beauchamp et al 2007., Kishnani et al.2010, Hicks et al 2011., Dagli et al.2017, Kishnani et al 2014 and Bali et al 2017.

Typically, patients with hepatic forms of GSD are referred to physicians either with recurrent hypoglycaemia, or with hepatomegaly. The severe forms of GSD in childhood are associated with very short fasting intervals of less than 4 hours (Lee et al., 1996). This is quite typical of GSD I but can also be seen in GSD III, VI and IX. Sometimes patients present in the newborn period with profound hypoglycaemia often with seizures (Lee et al., 1996).

The hypoglycaemic glycogen storage diseases (GSD) include GSD 0, I, III, VI, IX and Fanconi Bickel syndrome. They are all associated with hypoglycaemia. GSD type 0 has a small liver and the other conditions have acquired hepatomegaly (Lee et al., 2013).