

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Department of Engineering Physics and Mathematics

MATHEMATICAL TECHNIQUES FOR MULTIPLE LAYER SECURITY SCHEMES

A Thesis Submitted for the Degree of Master of Science in Engineering Mathematics

Prepared by:

Eng. Abeer Samir Khalifa Abd-Allah

Under the supervision of

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim El-Rafei

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Dr. Ramy Farouk Taki Eldin

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Dr. Wassim Joseph Alexan

Department of Information and Engineering Technology German University in Cairo

Ain Shams University Faculty of Engineering Department of Engineering Physics and Mathematics

MATHEMATICAL TECHNIQUES FOR MULTIPLE LAYER SECURITY SCHEMES

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the M.Sc. degree in Engineering Mathematics

Prepared by:

Eng. Abeer Samir Khalifa Abd-Allah

Bachelor in Communication Engineering
Department of Communication
Helwan University

Examination Committee

Title, Name and Affiliation

Signature

Prof. Dr. Hamdy Mohamed Ahmed

Department of Engineering Physics and Mathematics El-Sherouk Academy

Prof. Dr. Salwa Hussein El-Ramly

Department of Electronics and Electrical Communication Engineering Faculty of Engineering, Ain Shams University

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim El-Rafei

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Date: / /

TABLE OF CONTENTS

Abstract	IV			
AcknowledgmentVI				
List of TablesVIII				
List of Fig	guresIX			
List of Sy	mbolsXII			
List of Ab	breviationsXIV			
Publicatio	ns Extracted from this ThesisXVI			
CHAPTER	1 INTRODUCTION1			
1.1 O	verview1			
1.2 Pr	roblem Statement1			
1.3 Re	esearch Motivation3			
1.4 O	bjective4			
1.5 Sc	cope and Contribution4			
1.6 TI	nesis Outline5			
CHAPTER	2 STEGANOGRAPHY AND DATA SECURITY7			
2.1 In	formation Security Main Concepts7			
2.2 Ba	asics of Security Implementation8			
2.3 C	ryptography Overview9			
2.3.1	Cryptography Main Concept9			
2.3.2	Basic Contents of Cryptography System10			
2.3.3	The Main Types of Cryptography10			
2.3.4	Some Examples for Cryptography Techniques11			
2.3.5	Cryptography Main Aims13			

2.4	Stegar	nography Overview	14
2.4	.1 S	teganography Definition	14
2.4	.2 В	asic Contents of Steganography System	14
2.4	.3 S	teganography Main Aims and Requirements	15
2.4	.4 C	lassifications of Steganography	17
2	2.4.4.1	Hiding Method Steganography	17
2	2.4.4.2	Cover Medium Steganography	18
2.5	3D In	age Steganography	24
2.5	.2 S	ome Applications of Steganography	28
2.6	Crypt	ography and Steganography	29
2.7	Stego	Image Quality Evaluation Metrics	30
2.8	Sumn	nary	33
CHAPT	ER 3	LITERATURE REVIEW ON STEGANOGRAPHY	34
3.1	Sumn	nary	46
CHAPT	ER 4	MATHEMATICAL BASICS FOR RANDOMNESS	47
4.1	Statis	ical Properties of Random Number Generation	47
4.2	Gener	al Requirements of Random Number Sequences	48
4.3	Categ	ories of Random Number Generator	49
4.3	.1 T	rue Random Number Generation	50
4.3	.2 P	seudo-Random Number Generation (PRNG)	50
4.3	.3 Ç	uasi-Random Number Generation	55
4.4	Logis	ic (Chaos) Equation Based on PRN Generation	57
4.4	.1 C	haotic System Dynamical Properties	62
CHAPT	ER 5	MULTI-LEVEL DATA SECURITY SCHEME	64
5.1	Introd	uction	64
5.2	Multi-	Level Data Security Implementation Through 3I) Image
Stega	nograp	ny	64
5.2	.1 B	lowfish Cryptography	65

5.2.1	.1 Blowfish General Features and Advantages	66
5.2.2	3D Image Steganography	66
5.2.3	Modular Equation for Random Sequence Generation	68
5.2.4	Slicing and Shuffling of the 3D Image Contents	70
5.3 Ste	ganography algorithm pseudo code	74
5.4 Per	formance Evaluation Metrics	75
5.5 Ex	perimental Results and Discussion	77
5.5.1	Numerical Structure and Results	78
5.5.2	Comparative Study	80
CHAPTER	6 CONCLUSION AND FUTURE WORK	83
6.1 Co	nclusion	83
6.2 Fut	ure Work	84
REFERENC	YES	86

ABSTRACT

The massive development in information transmission and communication technology requires several potentials for information security. Many methods have been developed and enhanced for exchanging information protection such as steganography and cryptography. Steganography is the art of hiding secret information within an appropriate visible cover media, such that only the authorized recipient, can know about the hiding of the information. The hidden information can exist on the form of text, image, audio or video. The approaches used in concealing secret data are seeking to select suitable cover media to these secret data in each approach. On the other hand, cryptography can be defined as the process where data or messages are converted into secret code for exchanging over a public channel. The main objective of this thesis is to develop and propose a new hybrid technique for data security through the integration between cryptography and improved steganography algorithms. The proposed system will be used to embed an encrypted secret message into a 3D cover image with minimal change and error in the received stego-image. The embedding is performed using the Least Significant Bit (LSB) approach into 3D grayscale image in its spatial domain. In this hybrid approach the secret message is encrypted first before being hidden, using Blowfish encryption technique that is chosen due to its proven security and efficiency. Steganography is implemented through slicing the 3D cover image into 2D slices. These 2D slices are randomly shuffled according to certain keys. Then the pixels in each slice are randomly shuffled with other keys. After that, the LSB data embedding takes place. Finally, re-shuffling of Shuffled pixels and slices are performed to obtain the stego-image. In this work, after performing the proposed techniques, several steganography performance evaluation metrics are incorporated including the peak signal to noise ratio (PSNR), Mean Square Error (MSE) and structural similarity index (SSIM). A comparison between the original image file (cover image) and the stegoimage is carried out through these metrics. Also, the developed scheme is compared to some of its counterparts from the literature and the results show its superior performance and simplicity over the methods in comparison.

This is to ensure less distortion of the original cover file after embedding the secret message. Experimental results presented at the end of the thesis confirm a relative improvement and efficiency in the used approaches.

Keywords: 3D image Steganography, Data Security, Information Hiding, Shuffling, Blowfish algorithm.

ACKNOWLEDGEMENT

At first and before all, I want to express all my praises to ALLAH for all the blessings and bounties He has bestowed on me through this long journey. Without ALLAH, nothing can be achieved.

I would like to convey my utmost gratitude, deep thanks and blessing to my supervisor **Assoc. Prof. Dr. Ahmed Ibrahim**, Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University and **Dr. Ramy Farouk**, Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, for their unwavering support of my research, supervising this project, their constant feedbacks as well as their patience, inspiration and enthusiasm, they really have made this a wonderful learning opportunity. Also, I would like to send my deepest thanks to **Dr. Wassim Alexan**, Department of Information and Engineering Technology, German University in Cairo, for his invaluable guidance, continuous support and motivation throughout the dissertation work. Without their helps and advices, I would not write these words for this thesis.

I am deeply thankful and blessed for the special, unique, amazing man; I have never forgotten in my life, **my faraway Dad** "May ALLAH bestow blessings upon his soul". He might be dead, but I believe he is heaven, happy with this progress and success more than I am. His good works will be remembered forever. He was the one who gave me the first push to this work and was always providing me with great support and encouragement. Although he is no longer with us in this world, thoughts of him will never leave our memories.

The acknowledgement will surely still incomplete without expressing my deep indebtedness and cordial thanks to my family's encouragement and love: **my husband**, **my mother**, **my brother**, and **my sister**, so I would like to express my deep gratitude and appreciation to them for their continuous support and encouragement. They have aided and helped me a lot in successfully completing my thesis.

I would also like to thank my friends, colleagues and anyone who has helped me even with thoughts and opinions or contributed in some way to this project.

Last but not least, I'd like to express my advanced grateful thanks to the **Examination Committee** for their important role in the accomplishment of this thesis.

Abeer Samir Khalifa 2021

LIST OF TABLES

Table 4.1: Output results of the PRNG using linear congruential method $x0 = 7$, $a = 5$, $c = 3$ and $m = 16$ 51
Table 4.2: Output results of the PRNG using linear congruential method $x0 = 7$, $a = 1$, $c = 3$ and $m = 16$ 52
Γable 4.3: Output results of the PRNG using linear congruential method with different $x0$, $a=13$, $c=0$ and $m=64$ 54
Γable 4.4: Van der Corput-sequence generation consecutive outputs57
Γable 5.1: Output results of Equation 5.2 at $q=2$ and $B=10$ 70
Γable 5.2: Output results of Equation 5.2 at $q=3$ and $B=10$ 70
Γable 5.3: Proposed Scheme Metrics for Various 3D Images. 80
Γable 5.4: Performance Comparison with Other Schemes from the Literature81

LIST OF FIGURES

Figure 1.1: Block diagram of general steganography model
Figure 2.1: The three main requirements for any security system8
Figure 2.2: Basic cryptography block diagram. It shows the sequenced stages for data ciphering in cryptography system9
Figure 2.3: The basic structure of general steganography model16
Figure 2.4: Steganography classification based on data hiding method18
Figure 2.5: Steganography classification based on the cover types19
Figure 2.6: 2D array of pixels for a digital image. Each pixel has (x, y) coordinates and intensity value
Figure 2.7: Color image with an example for color values in addition to the LSB embedding23
Figure 2.8: Slicing of 3D object into a number of 2D slices25
Figure 2.9: Spikey Image in its spatial domain and after transformation to frequency the domain
Figure 2.10: The successive operations for 3D object domain transformation and its recovery
Figure 2.11: Point Cloud (shown on the left) and Mesh (shown on the right) representations of the Stanford bunny27
Figure 2.12: The basic levels of a general steganography technique28
Figure 2.13: Relation between cryptography and steganography main concepts
Figure 3.1: Block diagram of the full procedures for message in [36]:36
Figure 3.2: Flowchart of: a) Hiding data in cover image and b)Recovering data from stego-image [37]38

Figure 3.3: Block diagram of New Hybrid Security Allocation Algorithm (NHSA) [38]39
Figure 3.4: The embedding flow chart of algorithm [39]41
Figure 3.5: Block diagram of the MST: a) data embedding method42
Figure 3.6: Block diagram of system model to: a) Embed secret data and b) Extract secret data from 3-D image in [43]43
Figure 3.7: Flowchart of: a) Embedding process and b) Extracting process in [45]
Figure 3.8: Block diagram of the proposed algorithm in [46]45
Figure 4.1: Types of random numbers generation with some examples49
Figure 4.2: Different chaotic behaviors of the logistic equation, substituting $r=1, r=2, r=3$ and $r=4$
Figure 4.3: The chaotic behavior diagram of difference logistic equations, showing the three phases of bifurcation process61
Figure 4.4: Plotting of dynamics of the Henon map that results on $(xn, xn + 1)$ plane
Figure 5.1: Cryptographic Blowfish algorithm with working of round structure
Figure 5.2: Blowfish F–function hardware implementation with 4 S-boxes.
Figure 5.3: "CT-engine" 3D-grayscale cover image: The original image before the data embedding71
Figure 5.4: 2D slices of the 3D object. Starting from left to right: slice1, slice 2, slice 3,, slice110
Figure 5.5: The sequential outputs of the 3D Image contents' shuffling and re-shuffling processes
Figure 5.6: Least Significant Bit (LSB) embedding Samples into shuffled pixels of a single 2D slice73