

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

"Evaluation of The Effect of N-Acetyl cysteine in the Prevention of Paclitaxel-Induced Peripheral Neuropathy in Cancer Patients"

A Thesis submitted for fulfillment of Master's Degree in Pharmaceutical Sciences (Clinical Pharmacy)

By

Hadeer Gamal Khalefa Ahmed

Clinical Pharmacist at Nasser Institute for Research and Treatment.

B.Sc. of Pharmaceutical Science, Ain Shams University, 2012

Under supervision of

Dr. Lamiaa Mohamed El Wakeel

Professor of Clinical Pharmacy

Faculty of Pharmacy - Ain Shams University

Dr. Rasha Mohamed Elsayed Abdel motagalee

MD Oncology Consultant

Nasser Institute for Research and Treatment

Dr. May Ahmed Shawki

Lecturer of Clinical Pharmacy

Faculty of Pharmacy - Ain Shams University

Faculty of Pharmacy
Ain Shams University
2021

Acknowledgements

I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deep appreciation to **Dr.Lamia Mohamed El Wakeel**., Professor of Clinical Pharmacy – Faculty of Pharmacy - Ain
Shams University, for her sincere help, valuable guidance and
continuous support in completing this work.

I am very grateful to **Dr.Rasha Abdel motagalee**, for her great assistance, precious advice and valuable guidance in completing this work.

I would like to thank **Dr. May Ahmed Shawki**, for her great and valuable help in the clinical aspects of the study.

I would like to thank **Dr. May Ashour (Neurology Specialist)**, for her great and valuable help in the clinical aspects of the study.

Many special thanks and deep gratitude for my parents who always supported me and my best friend **Marwa Zaid** for their kind and sincere help, love and support.

بسم الله الرحمن الرحيم قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إلاً" مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ " الْحَكِيمُ صدق الله العظيم سورة البقرة

(الاية 32)

Table of contents

Contents	Pages
List of tables	i
list of figures	ii
List of abbreviations	iii
Abstract	iv
Introduction	vi
Review of literature	
Breast cancer	
• Epidemiology	1
 Pathogenesis 	3
• Screening	4
Clinical presentation and diagnosis	5
Pathological and molecular classification of breast cancer	6
• Staging	7
Prognostic factors	8
Treatment modalities	9
Chemotherapy induced peripheral neuropathy	
Overview and incidence	13
Clinical presentation and epidemiology	14
 Pathophysiology 	15
 Consequences on quality of life 	1
Management of CIPN	16
Paclitaxel induced peripheral neuropathy	
Overview and incidence	
 Pathophysiology 	17
 Antioxidants and PIPN 	17
N- acetyl cysteine	19
Pharmacology of NAC	
Pharmacology of NAC Pharmacokinetics of NAC	20
Filatiliacokilictics of IVAC	21

Safety and tolerability of NAC	21			
N-acetyl potential preventing of PIPN	22			
Nerve growth factor				
NGF and breast cancer	23			
NGF and CIPN	23			
Aim of the work	24			
Patients and methods	25			
Results	36			
Discussion	49			
Summary	54			
Conclusion, limitations and recommendations	56			
Reference	57			
Appendices	77			
Arabic summary				

List of tables

Number	Table	Page	
1	Risk factors of breast cancer	4	
2	TNM classification of breast cancer	8	
3	AJCC staging systems of breast cancer	8	
4	Prognostic factors of breast cancer	9	
5	The National Cancer Institute's common toxicity criteria	28	
	for adverse event (NCI-CTCAE) version.4.03		
6	Modified total neuropathy score (mTNS)	29	
7	The Functional Assessment of Cancer	30	
	Therapy/Gynecologic Oncology Group-Neurotoxicity		
	(FACT-GOG-NTX) subscale		
8	Baseline demographics	37	
9	Baseline clinical characteristics	39	
10	Incidence and grading of PIPN	40	
11	Severity of neuropathy using mTNS	41	
12	Survival analysis of the study groups	42	
13	Quality of life assessment using (FACT-GOC-NTX	44	
	subscale)		
14	Serum biomarkers levels(nerve growth factor and	45	
	malondialdehyde)		
15	Adverse effects reported by the patients in study groups	48	

List of figures

Number	Figure	Page
1	Age-related incidence of breast cancer worldwide	2
2	Histopathological classification of breast cancer	6
3	The most common agents that cause CIPN	13
4	Common pathophysiological mechanisms of paclitaxel	15
	induced peripheral neuropathy(PIPN)	
5	Role of oxidative stress in PIPN	18
6	Chemical structure of N-acetyl cysteine(NAC)	20
7	The synthetic pathway of GSH from NAC	21
8	The design of the study	25
9	Standard calibration curve of NGF	32
10	Flow chart of study participant	36
11	Pie chart of menopausal status in control, high and low dose group	38
12	Kaplan- meier curve describing time to develop grade 2,3 peripheral neuropathy in three groups	43
13	Box plot of pre and post NGF	46
14	Box plot of pre and post MDA	47

List of abbreviations

ESBC	Early stage breast cancer
CIPN	Chemotherapy induced peripheral neuropathy
ROS	Reactive oxygen species
PIPN	Paclitaxel induced peripheral neuropathy
NAC	N-acetyl cysteine
GSH	Glutathione
QOL	Quality of life
ER	Estrogen receptor
PR	Progesterone receptor
HER	Human epidermal growth factor
BCS	Breast conservative surgery
DRG	Dorsal root ganglia
NCI-CTACE	National common terminology criteria for adverse effect
mTNS	Modified total neuropathy score
FACT-GOG-	The Functional Assessment of Cancer Therapy/Gynecologic
NTX	Oncology Group-Neurotoxicity
NGF	Nerve growth factor
MDA	Malondialdehyde
RT	Radiotherapy
BSA	Body surface area

Abstract

Abstract

Background:

Breast cancer is the most common cancer in women. Currently, the average risk of breast cancer in the United States is about 13% indicating that, one for every eight women has the chance to develop breast cancer. There are different treatment modalities for breast cancer including surgery, radiotherapy, endocrine therapy and chemotherapy. Paclitaxel is a microtubule stabilizing agent that is most commonly used in the treatment of early stage breast cancer patients (ESBC). Paclitaxel can cause painful sensory neuropathy which is a dose-dependent cumulative side effect. Paclitaxel induced peripheral neuropathy (PIPN) occurs in about 60-70% of patients and adversely affect their quality of life (QOL). One of the main pathophysiological mechanism of PIPN is oxidative stress which causes neuronal damage. N-acetyl cysteine (NAC), a powerful antioxidant which might have a protective role against PIPN through oxidative stress reduction and free radical elimination. The aim of the current study was to evaluate the effect of NAC on the incidence and severity of PIPN in ESBC.

Methods:

A prospective, randomized, controlled, open-label study was conducted on 75 early stage breast cancer patients receiving adjuvant paclitaxel 80 mg/m2 weekly for 12 weeks. Patients were included if they were adults >18 years old with adequate bone marrow, kidney, and liver function. Exclusion criteria included clinical and diabetic neuropathy or receiving vitamin supplementations including vitamin B complex. Eligible patients were randomized to either the low dose group who received 1200mg NAC daily, the high dose group who received 1200mg NAC twice daily and the control group who received paclitaxel only. The primary outcome was the incidence of PIPN using the National Cancer Institute's common terminology criteria for adverse event (NCI-CTCAE) while secondary outcomes were the severity of PIPN using modified total neuropathy score (mTNS), QOL using Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACT-GOG-NTX) subscale, time to develop grade 2,3 peripheral neuropathy, serum nerve growth factor (NGF) and serum malondialdehyde (MDA).

Results

Final analysis was done on 65 patients. At the end of the 12-week-period, the incidence of grade (2, 3) peripheral neuropathy was significantly lower in the high dose group (28.6%) compared to the low dose group (61.9%) and the control group (100%), p value < 0.001.

After 6 and 12 weeks, the total mTNS was significantly lower in the low dose and the high dose group compared to the control group (p value < 0.001). Comparisons of mTNS within groups were statistically significant in the three study groups (p value < 0.001). The QOL score was statistically different between the three groups after 6 and 12 weeks (p value < 0.001). Comparisons of the QOL within groups revealed statistically higher scores of QOL in the three groups (p value < 0.001). Serum NGF was significantly higher in the high dose group and serum MDA was lower in the high and the low dose groups. Comparing the low dose group to the control group, the HR was found to be 0.123 (95% confidence interval: 0.055–0.275) while when comparing the high dose group with the control group the hazard ratio was 0.047 (95% confidence interval: 0.017–0.131).

The high dose was considered protective by 95.3% and the low dose by 87.7% as compared to the control group. Only one patient in the high dose group was withdrawn from the study because of acute watery diarrhea with a frequency of 5–7 times per day and abdominal pain. Two patients were withdrawn from the low dose group because of a hypersensitivity reaction with skin rash that necessitated treatment with oral and topical antihistaminic. Other adverse effects reported were tolerable including nausea and vomiting (11 patients), diarrhea (3 patients), constipation (5 patients), and transient skin rash (5 patients).

Conclusion

Oral NAC at doses of 1200mg once and twice daily were found to be effective in decreasing the incidence and severity of PIPN in ESBC with improvement in their QOL. Oral NAC was tolerable with minimal side effect.

Introduction

Breast cancer is the second most common cancer in women with an incidence of 1.5 million cases each year (Barnard et al., 2015). It accounts for 32 % of cancer in Egyptian women (Ibrahim et al., 2014). Treatment of early stage breast cancer (ESBC) includes surgery followed by adjuvant chemotherapy (Chew, 2001). Chemotherapeutic agents, despite being effective in arresting the progression of cancer by targeting and eliminating rapidly dividing cancer cells, they are associated with various side effects with 20-100% of patients develop chemotherapy-induced peripheral neuropathy (CIPN)(Zhang et al., 2017a).

Chemotherapy-induced peripheral neuropathy can be defined as a disturbance of the structure and function of peripheral motor, sensory, and autonomic nerves due to chemotherapy causing peripheral neuropathic symptoms and signs (**Kieffer et al., 2017**). It is a common and dose limiting side effect of several chemotherapy agents, including paclitaxel, one of the adjuvant chemotherapeutic agents used in management of early stage breast cancer (**Kottschade et al., 2011**).

The majority of signs and symptoms of CIPN arise from damage to dorsal root ganglion neurons or their axons, leading to sensory loss, and sometimes sensory ataxia (Staff et al., 2017). Sensory disturbances range from a mild tingling sensation to spontaneous burning pain and hypersensitivity to stimuli. These symptoms often affect both hands and feet and may spread into a "glove/stocking "distribution (Park, 2014). Motor symptoms include foot drop, wrist drop and difficulty with fine motor skills, such as buttoning a shirt or holding a pen (Fernandez et al., 2014). For some individuals, severe and disabling CIPN symptoms become chronic, impairing their daily function and diminishing their quality of life, this can lead to chemotherapy dosage reductions and/or treatment delays, resulting in sub-therapeutic cancer treatment (Ellen etal., 2013). The most common clinical neurotoxicity associated with paclitaxel is a predominantly sensory peripheral neuropathy which is dose- and infusion-duration related (Scripture et al., 2006).