

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Assessment of Serum Fibroblast Growth Factor 21 as a Risk Factor for the Occurrence of Cardiometabolic Disorders among Psoriatic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in **Dermatology**, **Venereology and Andrology**

By

Noora Nasser Mohamed Salama

M.B.B.,Ch.
Faculty of Medicine, Ain Shams University

Under Supervision of

Dr. Maha Adel Shaheen

Professor of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Dr. Ahmed Abd Elfattah Afify

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Dr. Walid Abdelhady Ahmed

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my heartiest acknowledgement to **Dr. Maha Adel Shaheen**, Professor of Dermatology, Venereology and Andrology, Ain Shams University, for her constructive suggestions, valuable guidance, and for her continuous support. I'm indebted to her for always being there to help and solve difficulties. I deem myself fortunate to work under her supervision.

My deepest appreciation to **Dr. Ahmed Abd Elfattah Afify**, Lecturer of Dermatology, Venereology
and Andrology, Ain Shams University, for his concrete
support and suggestions. I appreciate all his contribution
and his great interest in this work. His constructive
comments will always be remembered.

I wish to express my deepest thanks and gratitude to **Dr. Walid Abdelhady Ahmed**, Lecturer of Clinical Pathology, Ain Shams University, for his continuous and enthusiastic stimulation throughout the whole work. Thank you for all your advice, ideas and support.

My biggest thanks of all go to my family (my dear father, my dear mother, my brothers and special thanks to my husband and colleagues for their remarkable patience, help, and prayers. Thank you for being there for me.

Noora Nasser

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	
Introduction	1
Aim of the Work	4
Review of Literature	
Psoriasis	5
■ Fibroblast Growth Factor 21	45
Patients and Methods	52
Results	62
Discussion	78
Conclusion	84
Recommendations	85
Summary	86
References	88
Arabic Summary	1

List of Tables

Table No.	. Title	Page No.
Table 1:	Susceptibility genetic loci of psoriasis The 5-point Investigator's Global Asse	
Table 3:	PASI score	
Table 4:	Sex among control group and	
14810 1	patients	
Table 5:	Baseline characteristics of control g	
	patients	•
Table 6:	The disease duration and family l	nistory of
	psoriasis	65
Table 7:	Comparison between PASI score be	efore and
	after treatment among psoriatic patie	
Table 8:	Comparison between the grades of	
	severity before and after treatmen	•
m 11 o	psoriatic patients.	
Table 9:	Comparison between psoriatic pati	
T 11 10	control group regarding the laborator	•
Table 10:	Comparison between psoriasis sub	-
Table 11:	regard FGF-21 levels	
Table 11:	before and after treatment among	v
	patients	-
Table 12:	Correlation between FGF-21 (pg/mL)	
14510 12.	score among psoriatic patients	
Table 13:	Correlation between FGF-21 (pg/	
	metabolic parameters among	
	patients	-
Table 14:	Correlation between CRP and PASI S	core 76
Table 15:	Correlation between duration of	psoriasis
	(years) and metabolic parameters a	
	blood pressure among psoriatic patier	nts 77

List of Figures

Fig. No.	Title	Page No.
Figure 1:	T cell activation by APCs	13
Figure 2:	Migration of T lymphocyte from lym	
Figure 3:	Pathogenesis of psoriasis	17
Figure 4:	Summary of pathogenesis of psoriasis	s20
Figure 5:	Histopathology of psoriasis (Haemat	
Figure 6:	Biologics in psoriasis	44
Figure 7:	Phylogenetic relationship of the FGF amino acid sequence	
Figure 8:	FGF–FGFR structure	48
Figure 9:	Physiological function of FGF-21	50
Figure 10:	Boxplot of FGF-21 among control an group.	_
Figure 11:	FGF-21 among psoriasis subgroups	72
Figure 12:	Correlation between FGF-21 (pg/mL among psoriatic patients	
Figure 13:	Scatter plot of CRP and PASI score	76

Tist of Abbreviations

Abb.	Full term
6n21	Chromosome 6
-	Aminoimidazole-4-carboxamide
AICAIL	ribonuleotide
ΛMD	Anti-microbial peptides
	Activator protein-1
	Activator protein-1Antigen-presenting cells
	Body mass index
	Body mass maex Body surface area
	CCAAT enhancer-othering proteinCluster of differentiation 2
	Dermal conventional DCs
	C reactive protein
	C reactive protein Cardiovascular disease
	Dentritic cells
	Demittic certs Dermatology Life Quality Index
	Dermatology Life Quality Index Diabetes mellitus
	Fibroblast growth factor
	Florodasi growth factorFGF receptors
	HGh receptors High-density lipoprotein cholesterol
	Human Immunodifficiency Virus
	Human leucocyte antigens
	Inflammatory bowel diseases Intercellular adhesion molecule -1
	Inflammatory DCs
IFN	,
	Interferone a
	Investigator's Global Assessment
	Interleukin
	Keratinocyte growth factor
	Langerhans cells
	Low-density lipoprotein cholesterol
	Lymphocyte functional antigen
MACE	Major adverse cardiovascular events

Tist of Abbreviations cont...

Abb.	Full term
	Hypothalamic-pituitary-adrenal
	Myeloid dendritic cells
	Minimal erythema dose
	Monocyte-derived LCs
	Metabolic syndrome
NAFLD	Nonalcoholic fatty liver disease
<i>NF-AT</i>	Nuclear factor of activated T cell
<i>NGF</i>	Nerve growth factor
NSAIDs	Non-Steroid Anti Inflammatory Drugs
<i>PASI</i>	Psoriasis Area and Severity Index
pDCs	Plasmacytoid DCs
<i>PPP</i>	Psoriasis pustulosa palmoplantaris
<i>PUVA</i>	Psoralen Ultraviolet A
rLCs	Resident LCs
ROS	Reactive oxygen species
	Standard deviation
<i>SPSS</i>	Statistical Package for Social Science
<i>T2D</i>	Type 2 diabetes
TCR	
<i>TG</i>	
TLRs	
	Tumor necrosis factor-α
Treg	
UV	C v
UVB	
	Vascular endothelial growth factor
	Vasoactive intestinal peptide
	Vascular permeability factor
	r I I I I I I I I I I I I I I I I I I I

Introduction

soriasis is a common and chronic inflammatory skin disease whose exact pathogenesis remains uncertain. In recent years, research focuses not only on understanding the genesis of skin lesions but especially on the explanation of systemic disorders associated with psoriasis (Lockshin et al., 2018).

Elevated risk of the occurrence of chronic inflammatory diseases in psoriatic patients, such as inflammatory bowel diseases (IBD), nonalcoholic fatty liver disease (NAFLD), diabetes mellitus (DM), obesity, or metabolic syndrome (MS) has been proven in various studies (Alsfyani et al., 2010).

Additionally, for years, psoriasis has been associated with an increased risk of atherosclerosis and its consequences, such as cardiovascular disease (CVD) or stroke (*Prodanovich* et al., 2009).

Chronic inflammation is a well-established factor linking both cutaneous manifestation of the disease and the increased coexistence of the above mentioned cardiometabolic disorders (*Boehncke et al.*, 2011).

Understanding the connection between the inflammatory state, psoriasis progression and severity, as well as the cardiometabolic dysfunction leads to more research for new markers of inflammation that would provide a tool for early diagnosis and discovery of new therapeutic methods for the systemic complications (*Kiluk et al.*, 2019).

The use of fibroblast growth factor, namely (FGF-21) considered as a promising approach to assess the risk and diagnose the presence of psoriasis-related cardiometabolic abnormalities (*Woo et al.*, 2013).

Circulating FGF-21 concentrations exhibit a characteristic diurnal rhythm in humans and dysregulation of the FGF-21 circadian rhythm correlates with obesity-induced lipid disorders (*Yu et al.*, 2011).

Similarly, serum FGF-21 is increased in several CVDs (coronary heart disease, atherosclerosis, myocardial ischemia, and cardiac hypertrophy), so serum FGF-21 levels might be regarded as a potential biomarker for CVDs as well as for metabolic disorders (*Gimeno and Moller*, 2014).

It has been suggested that combining FGF-21 measurement with other lipid profile parameters including body mass index (BMI), serum triglycerides (TG) and cholesterol levels, may represent a reasonable perspective for the prediction of these metabolic diseases. Since an FGF-21 assay is simple and noninvasive, it may be a promising test for population-based screening for the aforementioned diseases, or for identifying those who are at high risk (*Xie and Leungue*, 2017).

In a report presented by Kiluk et al., (2019), they for the first time elevated serum FGF-21 concentration in psoriasis patients compared to healthy controls. This leads to question if psoriasis can also be considered as a state of metaflammation and if FGF-21 could be novel biomarker of psoriasis or progression of its comorbidities.

AIM OF THE WORK

The aim of the present work is to evaluate the serum level of FGF-21 in psoriatic patients versus healthy controls and to correlate it with the disease severity (PASI Score), BMI and other metabolic parameters.